0xnu commited on
Commit
ffe90da
1 Parent(s): 03b643f

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -2
README.md CHANGED
@@ -81,7 +81,7 @@ Using this model becomes easy when you have [sentence-transformers](https://www.
81
  pip install -U sentence-transformers
82
  ```
83
 
84
- Then you can use the model like this:
85
 
86
  ```python
87
  from sentence_transformers import SentenceTransformer
@@ -92,10 +92,57 @@ embeddings = model.encode(sentences)
92
  print(embeddings)
93
  ```
94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
  ### License
96
 
97
  This project is licensed under the [MIT License](./LICENSE).
98
 
99
  ### Copyright
100
 
101
- (c) 2024 [Finbarrs Oketunji](https://finbarrs.eu).
 
81
  pip install -U sentence-transformers
82
  ```
83
 
84
+ ### Embeddings
85
 
86
  ```python
87
  from sentence_transformers import SentenceTransformer
 
92
  print(embeddings)
93
  ```
94
 
95
+ ### Advanced Usage
96
+
97
+ ```python
98
+ from sentence_transformers import SentenceTransformer, util
99
+ import torch
100
+
101
+ # Define sentences in Igbo
102
+ sentences = [
103
+ "Gịnị bụ olu obodo England?",
104
+ "Kedu anụmanụ kachasị ọkụ n'ụwa?",
105
+ "Olee otú e si amụta asụsụ Igbo?",
106
+ "Gịnị bụ nri kachasị ewu ewu na Naịjirịa?",
107
+ "Kedu ụdị uwe a na-eyi maka emume Igbo?"
108
+ ]
109
+
110
+ # Load the Igbo-trained model
111
+ model = SentenceTransformer('0xnu/pmmlv2-fine-tuned-igbo')
112
+
113
+ # Compute embeddings
114
+ embeddings = model.encode(sentences, convert_to_tensor=True)
115
+
116
+ # Function to find the closest sentence
117
+ def find_closest_sentence(query_embedding, sentence_embeddings, sentences):
118
+ # Compute cosine similarities
119
+ cosine_scores = util.pytorch_cos_sim(query_embedding, sentence_embeddings)[0]
120
+ # Find the position of the highest score
121
+ best_match_index = torch.argmax(cosine_scores).item()
122
+ return sentences[best_match_index], cosine_scores[best_match_index].item()
123
+
124
+ query = "Gịnị bụ olu obodo England?"
125
+ query_embedding = model.encode(query, convert_to_tensor=True)
126
+ closest_sentence, similarity_score = find_closest_sentence(query_embedding, embeddings, sentences)
127
+
128
+ print(f"Ajụjụ: {query}")
129
+ print(f"Ahịrịokwu yiri ya kachasị: {closest_sentence}")
130
+ print(f"Skọọ nyiri: {similarity_score:.4f}")
131
+
132
+ # You can also try with a new sentence not in the original list
133
+ new_query = "Kedu aha eze nọ n'obodo Enugwu?"
134
+ new_query_embedding = model.encode(new_query, convert_to_tensor=True)
135
+ closest_sentence, similarity_score = find_closest_sentence(new_query_embedding, embeddings, sentences)
136
+
137
+ print(f"\nAjụjụ ọhụrụ: {new_query}")
138
+ print(f"Ahịrịokwu yiri ya kachasị: {closest_sentence}")
139
+ print(f"Skọọ nyiri: {similarity_score:.4f}")
140
+ ```
141
+
142
  ### License
143
 
144
  This project is licensed under the [MIT License](./LICENSE).
145
 
146
  ### Copyright
147
 
148
+ (c) 2024 [Finbarrs Oketunji](https://finbarrs.eu).