File size: 2,274 Bytes
b51dfa5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- clinc_oos
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-distilled-clinc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: clinc_oos
type: clinc_oos
config: plus
split: validation
args: plus
metrics:
- name: Accuracy
type: accuracy
value: 0.9493548387096774
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-distilled-clinc
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2862
- Accuracy: 0.9494
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 318 | 1.7390 | 0.7171 |
| 2.0984 | 2.0 | 636 | 0.8746 | 0.8616 |
| 2.0984 | 3.0 | 954 | 0.5056 | 0.9168 |
| 0.7905 | 4.0 | 1272 | 0.3769 | 0.9371 |
| 0.3725 | 5.0 | 1590 | 0.3263 | 0.9461 |
| 0.3725 | 6.0 | 1908 | 0.3055 | 0.9461 |
| 0.2654 | 7.0 | 2226 | 0.2966 | 0.9471 |
| 0.2335 | 8.0 | 2544 | 0.2897 | 0.9506 |
| 0.2335 | 9.0 | 2862 | 0.2871 | 0.9494 |
| 0.2203 | 10.0 | 3180 | 0.2862 | 0.9494 |
### Framework versions
- Transformers 4.35.2
- Pytorch 1.13.0
- Datasets 2.15.0
- Tokenizers 0.15.0
|