File size: 1,542 Bytes
08660ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
language:
- en
metrics:
- code_eval
base_model:
- deepseek-ai/deepseek-coder-6.7b-base
pipeline_tag: text-generation
library_name: transformers
tags:
- code
---
# AssertSolver
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Finetuned from model:** deepseek-ai/deepseek-coder-6.7b-base
### Model Sources
<!-- Provide the basic links for the model. -->
- **Paper:** Insights from Rights and Wrongs: A Large Language Model for Solving Assertion Failures in RTL Design
## How to Get Started with the Model
Use the code below to get started with the model.
```
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_name = "1412312anonymous/AssertSolver"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
prompt = "Tell me how to fix the bugs inside: `always(*) // Pretend that this * should be rst`"
messages = [{"role": "user", "content": prompt}]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
outputs = model.generate(
inputs,
max_new_tokens=512,
do_sample=False,
top_k=50,
top_p=0.95,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
)
print(tokenizer.decode(outputs[0][len(inputs[0]) :], skip_special_tokens=True))
``` |