--- language: - en metrics: - code_eval base_model: - deepseek-ai/deepseek-coder-6.7b-base pipeline_tag: text-generation library_name: transformers tags: - code --- # AssertSolver ## Model Details ### Model Description - **Finetuned from model:** deepseek-ai/deepseek-coder-6.7b-base ### Model Sources - **Paper:** Insights from Rights and Wrongs: A Large Language Model for Solving Assertion Failures in RTL Design ## How to Get Started with the Model Use the code below to get started with the model. ``` from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_name = "1412312anonymous/AssertSolver" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda() prompt = "Tell me how to fix the bugs inside: `always(*) // Pretend that this * should be rst`" messages = [{"role": "user", "content": prompt}] inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device) outputs = model.generate( inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, ) print(tokenizer.decode(outputs[0][len(inputs[0]) :], skip_special_tokens=True)) ```