File size: 2,354 Bytes
3a564ce f1e8d22 3a564ce f1e8d22 3a564ce f1e8d22 3a564ce f1e8d22 3a564ce f1e8d22 3a564ce f1e8d22 3a564ce f1e8d22 3a564ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.83
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-gtzan
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9268
- Accuracy: 0.83
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- label_smoothing_factor: 0.1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.956 | 0.99 | 56 | 1.8086 | 0.5 |
| 1.4192 | 2.0 | 113 | 1.3941 | 0.67 |
| 1.1689 | 2.99 | 169 | 1.0402 | 0.76 |
| 0.9796 | 4.0 | 226 | 0.9111 | 0.79 |
| 0.7421 | 4.99 | 282 | 0.9137 | 0.85 |
| 0.6455 | 6.0 | 339 | 0.9775 | 0.83 |
| 0.6572 | 6.99 | 395 | 0.9103 | 0.83 |
| 0.5707 | 8.0 | 452 | 0.9437 | 0.83 |
| 0.5765 | 8.99 | 508 | 0.9216 | 0.84 |
| 0.519 | 9.91 | 560 | 0.9268 | 0.83 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|