--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.83 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.9268 - Accuracy: 0.83 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.956 | 0.99 | 56 | 1.8086 | 0.5 | | 1.4192 | 2.0 | 113 | 1.3941 | 0.67 | | 1.1689 | 2.99 | 169 | 1.0402 | 0.76 | | 0.9796 | 4.0 | 226 | 0.9111 | 0.79 | | 0.7421 | 4.99 | 282 | 0.9137 | 0.85 | | 0.6455 | 6.0 | 339 | 0.9775 | 0.83 | | 0.6572 | 6.99 | 395 | 0.9103 | 0.83 | | 0.5707 | 8.0 | 452 | 0.9437 | 0.83 | | 0.5765 | 8.99 | 508 | 0.9216 | 0.84 | | 0.519 | 9.91 | 560 | 0.9268 | 0.83 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3