Update README.md
Browse files
README.md
CHANGED
@@ -25,11 +25,11 @@ license: cc-by-nc-4.0
|
|
25 |
|
26 |
### Pre-training
|
27 |
|
28 |
-
Pre-training took
|
29 |
|
30 |
| Params | Global batch size\* | Initial learning rate | Train iter.\* | Max length\* | Weight decay |
|
31 |
| -- | -- | -- | -- | -- | -- |
|
32 |
-
| 1.3B | 4.0M | 4E-4 | 1.0T |
|
33 |
|
34 |
(\* unit: tokens)
|
35 |
|
@@ -51,11 +51,11 @@ We evaluate 42dot-PLM on a variety of academic benchmarks both on Korean and Eng
|
|
51 |
|
52 |
|Tasks / Macro-F1|[KoGPT2](https://github.com/SKT-AI/KoGPT2) <br>1.2B|[Polyglot-Ko](https://github.com/EleutherAI/polyglot) <br>1.3B|[XGLM](https://huggingface.co/facebook/xglm-1.7B) <br>1.7B|[PolyLM](https://huggingface.co/DAMO-NLP-MT/polylm-1.7b) <br>1.7B|42dot-PLM <br>1.3B ko-en|
|
53 |
|--------------|-----------|----------------|---------|-----------|------------------------|
|
54 |
-
|boolq |0.337 |0.355 |**0.502** |0.334 |0.
|
55 |
-
|copa |0.67 |**0.721** |0.616 |0.513 |0.
|
56 |
-
|hellaswag |0.404 |0.401 |0.374 |0.321 |**0.
|
57 |
-
|sentineg |0.606 |0.679 |0.46 |0.382 |**0.
|
58 |
-
|**average** |0.504 |0.539 |0.488 |0.388 |**0.
|
59 |
|
60 |
|
61 |
#### English
|
@@ -66,28 +66,28 @@ We evaluate 42dot-PLM on a variety of academic benchmarks both on Korean and Eng
|
|
66 |
|
67 |
| Tasks / Metric | [MPT](https://huggingface.co/mosaicml/mpt-1b-redpajama-200b) <br>1B | [OPT](https://huggingface.co/facebook/opt-1.3b) <br>1.3B | XGLM <br>1.7B | PolyLM <br>1.7B | 42dot-PLM <br>1.3B ko-en |
|
68 |
| ---------------------- | ------ | -------- | --------- | ----------- | ------------------------ |
|
69 |
-
| anli_r1/acc | 0.309 | **0.341** | 0.334 | 0.336 | 0.
|
70 |
-
| anli_r2/acc | 0.334 | **0.339** | 0.331 | 0.314 | 0.
|
71 |
-
| anli_r3/acc | 0.33 | 0.336 | 0.333 | **0.339** | 0.
|
72 |
-
| arc_challenge/acc | 0.268 | 0.234 | 0.21 | 0.198 | **0.
|
73 |
-
| arc_challenge/acc_norm | 0.291 | 0.295 | 0.243 | 0.256 | **0.
|
74 |
-
| arc_easy/acc | 0.608 | 0.571 | 0.537 | 0.461 | **0.
|
75 |
-
| arc_easy/acc_norm |
|
76 |
-
| boolq/acc | 0.517 | 0.578 | 0.585 | 0.617 | **0.
|
77 |
-
| hellaswag/acc |
|
78 |
-
| hellaswag/acc_norm | 0.532 |
|
79 |
-
| openbookqa/acc | **0.238** | 0.234 | 0.17 | 0.166 | 0.
|
80 |
-
| openbookqa/acc_norm | **0.334** | **0.334** | 0.298 | **0.334** | 0.
|
81 |
-
| piqa/acc | 0.714 | **0.718** | 0.697 | 0.667 | 0.
|
82 |
-
| piqa/acc_norm | 0.72 | **0.724** | 0.703 | 0.649 | 0.
|
83 |
-
| record/f1 | 0.84 | **0.857** | 0.775 | 0.681 | 0.
|
84 |
-
| record/em | 0.832 | **0.849** | 0.769 | 0.674 | 0.
|
85 |
-
| rte/acc | 0.541 | 0.523 | **0.559** | 0.513 | 0.
|
86 |
-
| truthfulqa_mc/mc1 | 0.224 | 0.237 | 0.215 | **0.251** | 0.
|
87 |
-
| truthfulqa_mc/mc2 | 0.387 | 0.386 | 0.373 | **0.428** | 0.
|
88 |
-
| wic/acc | 0.498 | **0.509** | 0.503 | 0.5 | 0.
|
89 |
-
| winogrande/acc | 0.574 | **0.595** | 0.55 | 0.519 | 0.
|
90 |
-
| **avearge** | 0.479 | 0.482 | 0.452 | 0.429 | **0.
|
91 |
|
92 |
## Limitations and Ethical Considerations
|
93 |
42dot-PLM shares a number of well-known limitations of other large language models (LLMs). For example, it may generate false and misinformative contents since 42dot-PLM is also subject to [hallucination](https://en.wikipedia.org/wiki/Hallucination_(artificial_intelligence)). In addition, 42dot-PLM may generate toxic, harmful and biased contents due to use of web-available training corpus. We strongly suggest that 42dot-PLM users should beware of those limitations and take necessary steps for mitigating those issues.
|
@@ -108,4 +108,4 @@ The 42dot-PLM is licensed under the Creative Commons Attribution-NonCommercial 4
|
|
108 |
url = {https://gitlab.42dot.ai/NLP/hyperai/ChatBaker},
|
109 |
version = {pre-release},
|
110 |
}
|
111 |
-
```
|
|
|
25 |
|
26 |
### Pre-training
|
27 |
|
28 |
+
Pre-training took 9 days using 256 * NVIDIA A100 GPUs. Related settings are listed below.
|
29 |
|
30 |
| Params | Global batch size\* | Initial learning rate | Train iter.\* | Max length\* | Weight decay |
|
31 |
| -- | -- | -- | -- | -- | -- |
|
32 |
+
| 1.3B | 4.0M | 4E-4 | 1.0T | 8K | 0.1 |
|
33 |
|
34 |
(\* unit: tokens)
|
35 |
|
|
|
51 |
|
52 |
|Tasks / Macro-F1|[KoGPT2](https://github.com/SKT-AI/KoGPT2) <br>1.2B|[Polyglot-Ko](https://github.com/EleutherAI/polyglot) <br>1.3B|[XGLM](https://huggingface.co/facebook/xglm-1.7B) <br>1.7B|[PolyLM](https://huggingface.co/DAMO-NLP-MT/polylm-1.7b) <br>1.7B|42dot-PLM <br>1.3B ko-en|
|
53 |
|--------------|-----------|----------------|---------|-----------|------------------------|
|
54 |
+
|boolq |0.337 |0.355 |**0.502** |0.334 |0.351 |
|
55 |
+
|copa |0.67 |**0.721** |0.616 |0.513 |0.711 |
|
56 |
+
|hellaswag |0.404 |0.401 |0.374 |0.321 |**0.437** |
|
57 |
+
|sentineg |0.606 |0.679 |0.46 |0.382 |**0.711** |
|
58 |
+
|**average** |0.504 |0.539 |0.488 |0.388 |**0.553** |
|
59 |
|
60 |
|
61 |
#### English
|
|
|
66 |
|
67 |
| Tasks / Metric | [MPT](https://huggingface.co/mosaicml/mpt-1b-redpajama-200b) <br>1B | [OPT](https://huggingface.co/facebook/opt-1.3b) <br>1.3B | XGLM <br>1.7B | PolyLM <br>1.7B | 42dot-PLM <br>1.3B ko-en |
|
68 |
| ---------------------- | ------ | -------- | --------- | ----------- | ------------------------ |
|
69 |
+
| anli_r1/acc | 0.309 | **0.341** | 0.334 | 0.336 | 0.328 |
|
70 |
+
| anli_r2/acc | 0.334 | **0.339** | 0.331 | 0.314 | 0.334 |
|
71 |
+
| anli_r3/acc | 0.33 | 0.336 | 0.333 | **0.339** | 0.333 |
|
72 |
+
| arc_challenge/acc | 0.268 | 0.234 | 0.21 | 0.198 | **0.282** |
|
73 |
+
| arc_challenge/acc_norm | 0.291 | 0.295 | 0.243 | 0.256 | **0.314** |
|
74 |
+
| arc_easy/acc | 0.608 | 0.571 | 0.537 | 0.461 | **0.623** |
|
75 |
+
| arc_easy/acc_norm | 0.555 | 0.51 | 0.479 | 0.404 | **0.561** |
|
76 |
+
| boolq/acc | 0.517 | 0.578 | 0.585 | 0.617 | **0.628** |
|
77 |
+
| hellaswag/acc | 0.415 | 0.415 | 0.362 | 0.322 | **0.419** |
|
78 |
+
| hellaswag/acc_norm | 0.532 | 0.537 | 0.458 | 0.372 | **0.538** |
|
79 |
+
| openbookqa/acc | **0.238** | 0.234 | 0.17 | 0.166 | 0.234 |
|
80 |
+
| openbookqa/acc_norm | **0.334** | **0.334** | 0.298 | **0.334** | 0.332 |
|
81 |
+
| piqa/acc | 0.714 | **0.718** | 0.697 | 0.667 | **0.718** |
|
82 |
+
| piqa/acc_norm | 0.72 | **0.724** | 0.703 | 0.649 | **0.724** |
|
83 |
+
| record/f1 | 0.84 | **0.857** | 0.775 | 0.681 | 0.85 |
|
84 |
+
| record/em | 0.832 | **0.849** | 0.769 | 0.674 | 0.841 |
|
85 |
+
| rte/acc | 0.541 | 0.523 | **0.559** | 0.513 | 0.516 |
|
86 |
+
| truthfulqa_mc/mc1 | 0.224 | 0.237 | 0.215 | **0.251** | 0.234 |
|
87 |
+
| truthfulqa_mc/mc2 | 0.387 | 0.386 | 0.373 | **0.428** | 0.382 |
|
88 |
+
| wic/acc | 0.498 | **0.509** | 0.503 | 0.5 | 0.503 |
|
89 |
+
| winogrande/acc | 0.574 | **0.595** | 0.55 | 0.519 | 0.575 |
|
90 |
+
| **avearge** | 0.479 | 0.482 | 0.452 | 0.429 | **0.489** |
|
91 |
|
92 |
## Limitations and Ethical Considerations
|
93 |
42dot-PLM shares a number of well-known limitations of other large language models (LLMs). For example, it may generate false and misinformative contents since 42dot-PLM is also subject to [hallucination](https://en.wikipedia.org/wiki/Hallucination_(artificial_intelligence)). In addition, 42dot-PLM may generate toxic, harmful and biased contents due to use of web-available training corpus. We strongly suggest that 42dot-PLM users should beware of those limitations and take necessary steps for mitigating those issues.
|
|
|
108 |
url = {https://gitlab.42dot.ai/NLP/hyperai/ChatBaker},
|
109 |
version = {pre-release},
|
110 |
}
|
111 |
+
```
|