Initial commit
Browse files- README.md +12 -12
- args.yml +2 -2
- dqn-Pong-v4.zip +1 -1
- dqn-Pong-v4/data +8 -8
- results.json +1 -1
- train_eval_metrics.zip +2 -2
README.md
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
---
|
2 |
library_name: stable-baselines3
|
3 |
tags:
|
4 |
-
-
|
5 |
- deep-reinforcement-learning
|
6 |
- reinforcement-learning
|
7 |
- stable-baselines3
|
@@ -12,17 +12,17 @@ model-index:
|
|
12 |
type: reinforcement-learning
|
13 |
name: reinforcement-learning
|
14 |
dataset:
|
15 |
-
name:
|
16 |
-
type:
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
23 |
|
24 |
-
# **DQN** Agent playing **
|
25 |
-
This is a trained model of a **DQN** agent playing **
|
26 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
|
@@ -44,21 +44,21 @@ pip install rl_zoo3
|
|
44 |
|
45 |
```
|
46 |
# Download model and save it into the logs/ folder
|
47 |
-
python -m rl_zoo3.load_from_hub --algo dqn --env
|
48 |
-
python -m rl_zoo3.enjoy --algo dqn --env
|
49 |
```
|
50 |
|
51 |
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
52 |
```
|
53 |
-
python -m rl_zoo3.load_from_hub --algo dqn --env
|
54 |
-
python -m rl_zoo3.enjoy --algo dqn --env
|
55 |
```
|
56 |
|
57 |
## Training (with the RL Zoo)
|
58 |
```
|
59 |
-
python -m rl_zoo3.train --algo dqn --env
|
60 |
# Upload the model and generate video (when possible)
|
61 |
-
python -m rl_zoo3.push_to_hub --algo dqn --env
|
62 |
```
|
63 |
|
64 |
## Hyperparameters
|
|
|
1 |
---
|
2 |
library_name: stable-baselines3
|
3 |
tags:
|
4 |
+
- Pong-v4
|
5 |
- deep-reinforcement-learning
|
6 |
- reinforcement-learning
|
7 |
- stable-baselines3
|
|
|
12 |
type: reinforcement-learning
|
13 |
name: reinforcement-learning
|
14 |
dataset:
|
15 |
+
name: Pong-v4
|
16 |
+
type: Pong-v4
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -21.00 +/- 0.00
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
23 |
|
24 |
+
# **DQN** Agent playing **Pong-v4**
|
25 |
+
This is a trained model of a **DQN** agent playing **Pong-v4**
|
26 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
|
|
|
44 |
|
45 |
```
|
46 |
# Download model and save it into the logs/ folder
|
47 |
+
python -m rl_zoo3.load_from_hub --algo dqn --env Pong-v4 -orga 51nd0re1 -f logs/
|
48 |
+
python -m rl_zoo3.enjoy --algo dqn --env Pong-v4 -f logs/
|
49 |
```
|
50 |
|
51 |
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
52 |
```
|
53 |
+
python -m rl_zoo3.load_from_hub --algo dqn --env Pong-v4 -orga 51nd0re1 -f logs/
|
54 |
+
python -m rl_zoo3.enjoy --algo dqn --env Pong-v4 -f logs/
|
55 |
```
|
56 |
|
57 |
## Training (with the RL Zoo)
|
58 |
```
|
59 |
+
python -m rl_zoo3.train --algo dqn --env Pong-v4 -f logs/
|
60 |
# Upload the model and generate video (when possible)
|
61 |
+
python -m rl_zoo3.push_to_hub --algo dqn --env Pong-v4 -f logs/ -orga 51nd0re1
|
62 |
```
|
63 |
|
64 |
## Hyperparameters
|
args.yml
CHANGED
@@ -6,7 +6,7 @@
|
|
6 |
- - device
|
7 |
- auto
|
8 |
- - env
|
9 |
-
-
|
10 |
- - env_kwargs
|
11 |
- null
|
12 |
- - eval_env_kwargs
|
@@ -56,7 +56,7 @@
|
|
56 |
- - save_replay_buffer
|
57 |
- false
|
58 |
- - seed
|
59 |
-
-
|
60 |
- - storage
|
61 |
- null
|
62 |
- - study_name
|
|
|
6 |
- - device
|
7 |
- auto
|
8 |
- - env
|
9 |
+
- Pong-v4
|
10 |
- - env_kwargs
|
11 |
- null
|
12 |
- - eval_env_kwargs
|
|
|
56 |
- - save_replay_buffer
|
57 |
- false
|
58 |
- - seed
|
59 |
+
- 2808795654
|
60 |
- - storage
|
61 |
- null
|
62 |
- - study_name
|
dqn-Pong-v4.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 13715387
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:41d2e31a79a64a0acd24bf78406270f01a4b3c883d0201e49c746fe6b6659334
|
3 |
size 13715387
|
dqn-Pong-v4/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCUNublBvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.dqn.policies",
|
6 |
"__doc__": "\n Policy class for DQN when using images as input.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function CnnPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {},
|
@@ -84,13 +84,13 @@
|
|
84 |
"__module__": "stable_baselines3.common.buffers",
|
85 |
"__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}",
|
86 |
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
87 |
-
"__init__": "<function ReplayBuffer.__init__ at
|
88 |
-
"add": "<function ReplayBuffer.add at
|
89 |
-
"sample": "<function ReplayBuffer.sample at
|
90 |
-
"_get_samples": "<function ReplayBuffer._get_samples at
|
91 |
-
"_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at
|
92 |
"__abstractmethods__": "frozenset()",
|
93 |
-
"_abc_impl": "<_abc._abc_data object at
|
94 |
},
|
95 |
"replay_buffer_kwargs": {},
|
96 |
"train_freq": {
|
|
|
4 |
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCUNublBvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.dqn.policies",
|
6 |
"__doc__": "\n Policy class for DQN when using images as input.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function CnnPolicy.__init__ at 0x7883f67d5e10>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7883f67dc940>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {},
|
|
|
84 |
"__module__": "stable_baselines3.common.buffers",
|
85 |
"__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}",
|
86 |
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
87 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7883f690aef0>",
|
88 |
+
"add": "<function ReplayBuffer.add at 0x7883f690af80>",
|
89 |
+
"sample": "<function ReplayBuffer.sample at 0x7883f690b010>",
|
90 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7883f690b0a0>",
|
91 |
+
"_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7883f690b130>)>",
|
92 |
"__abstractmethods__": "frozenset()",
|
93 |
+
"_abc_impl": "<_abc._abc_data object at 0x7883f68ce700>"
|
94 |
},
|
95 |
"replay_buffer_kwargs": {},
|
96 |
"train_freq": {
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": -21.0, "std_reward": 0.0, "is_deterministic": false, "n_eval_episodes": 10, "eval_datetime": "2024-12-04T07:22:07.869826"}
|
train_eval_metrics.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71b6041f0f35ab2cc17eb08bcf41cc53e2917c06f8088b8a381f74579b74b020
|
3 |
+
size 9125
|