File size: 1,966 Bytes
727b2ab
135a011
727b2ab
135a011
727b2ab
 
 
 
 
 
 
 
 
 
 
 
 
 
6d9e825
727b2ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d9e825
 
 
 
 
 
 
 
 
 
727b2ab
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: demo-dog
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# demo-dog

This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.2-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5062

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 4.6644        | 0.9655 | 7    | 3.6989          |
| 3.1964        | 1.9310 | 14   | 2.5593          |
| 2.1512        | 2.8966 | 21   | 1.4979          |
| 1.1446        | 4.0    | 29   | 0.7417          |
| 0.9436        | 4.9655 | 36   | 0.6006          |
| 0.8548        | 5.9310 | 43   | 0.5513          |
| 0.8057        | 6.8966 | 50   | 0.5254          |
| 0.6854        | 8.0    | 58   | 0.5114          |
| 0.7709        | 8.9655 | 65   | 0.5069          |
| 0.7337        | 9.6552 | 70   | 0.5062          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.1.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1