runninglsy commited on
Commit
a2db297
1 Parent(s): 90bcff8

initial commit

Browse files
README.md CHANGED
@@ -1,3 +1,94 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - AIDC-AI/Ovis-dataset
5
+ library_name: transformers
6
+ tags:
7
+ - MLLM
8
+ ---
9
+
10
+ ## Introduction
11
+ Ovis is a novel Multimodal Large Language Model (MLLM) architecture, designed to structurally align visual and textual embeddings. For a comprehensive introduction, please refer to [Ovis paper](https://arxiv.org/abs/2405.20797) and [Ovis GitHub](https://github.com/AIDC-AI/Ovis).
12
+
13
+ ## Model
14
+ Ovis can be instantiated with popular LLMs (e.g., Qwen, Llama3). We provide the following pretrained Ovis MLLMs:
15
+
16
+ | | Ovis-Clip-Qwen1.5-7B | Ovis-Clip-Llama3-8B | Ovis-Clip-Qwen1.5-14B |
17
+ |:---------------|-------------------------------------------------------------------:|------------------------------------------------------------------:|--------------------------------------------------------------------:|
18
+ | ViT | Clip | Clip | Clip |
19
+ | LLM | Qwen1.5-7B-Chat | Llama3-8B-Instruct | Qwen1.5-14B-Chat |
20
+ | Download | [Huggingface](https://huggingface.co/AIDC-AI/Ovis-Clip-Qwen1_5-7B) | [Huggingface](https://huggingface.co/AIDC-AI/Ovis-Clip-Llama3-8B) | [Huggingface](https://huggingface.co/AIDC-AI/Ovis-Clip-Qwen1_5-14B) |
21
+ | MMStar | 44.3 | 49.5 | 48.5 |
22
+ | MMB-EN | 75.1 | 77.4 | 78.4 |
23
+ | MMB-CN | 70.2 | 72.8 | 76.6 |
24
+ | MMMU-Val | 39.7 | 44.7 | 46.7 |
25
+ | MMMU-Test | 37.7 | 39.0 | 40.7 |
26
+ | MathVista-Mini | 41.4 | 40.8 | 43.4 |
27
+ | MME | 1882 | 2009 | 1961 |
28
+ | HallusionBench | 56.4 | 61.1 | 57.6 |
29
+ | RealWorldQA | 60.0 | 57.9 | 62.7 |
30
+
31
+ ## Usage
32
+ Below is a code snippet to run Ovis with multimodal inputs. For additional usage instructions, including inference wrapper and Gradio UI, please refer to [Ovis GitHub](https://github.com/AIDC-AI/Ovis).
33
+ ```bash
34
+ pip install torch==2.1.0 transformers==4.41.1 deepspeed==0.14.0 pillow==10.3.0
35
+ ```
36
+ ```python
37
+ import torch
38
+ from PIL import Image
39
+ from transformers import AutoModelForCausalLM
40
+
41
+ # load model
42
+ model = AutoModelForCausalLM.from_pretrained("AIDC-AI/Ovis-Clip-Qwen1_5-7B",
43
+ torch_dtype=torch.bfloat16,
44
+ multimodal_max_length=8192,
45
+ trust_remote_code=True).cuda()
46
+ text_tokenizer = model.get_text_tokenizer()
47
+ visual_tokenizer = model.get_visual_tokenizer()
48
+ conversation_formatter = model.get_conversation_formatter()
49
+
50
+ # enter image path and prompt
51
+ image_path = input("Enter image path: ")
52
+ image = Image.open(image_path)
53
+ text = input("Enter prompt: ")
54
+ query = f'<image> {text}'
55
+ prompt, input_ids = conversation_formatter.format_query(query)
56
+ input_ids = torch.unsqueeze(input_ids, dim=0).to(device=model.device)
57
+ attention_mask = torch.ne(input_ids, text_tokenizer.pad_token_id).to(device=model.device)
58
+ pixel_values = [visual_tokenizer.preprocess_image(image).to(
59
+ dtype=visual_tokenizer.dtype, device=visual_tokenizer.device)]
60
+
61
+ # print model output
62
+ with torch.inference_mode():
63
+ kwargs = dict(
64
+ pixel_values=pixel_values,
65
+ attention_mask=attention_mask,
66
+ do_sample=False,
67
+ top_p=None,
68
+ temperature=None,
69
+ top_k=None,
70
+ repetition_penalty=None,
71
+ max_new_tokens=512,
72
+ use_cache=True,
73
+ eos_token_id=text_tokenizer.eos_token_id,
74
+ pad_token_id=text_tokenizer.pad_token_id
75
+ )
76
+ output_ids = model.generate(input_ids, **kwargs)[0]
77
+ input_token_len = input_ids.shape[1]
78
+ output = text_tokenizer.decode(output_ids[input_token_len:], skip_special_tokens=True)
79
+ print(f'Output: {output}')
80
+ ```
81
+
82
+ ## Citation
83
+ If you find Ovis useful, please cite the paper
84
+ ```
85
+ @article{lu2024ovis,
86
+ title={Ovis: Structural Embedding Alignment for Multimodal Large Language Model},
87
+ author={Shiyin Lu and Yang Li and Qing-Guo Chen and Zhao Xu and Weihua Luo and Kaifu Zhang and Han-Jia Ye},
88
+ year={2024},
89
+ journal={arXiv:2405.20797}
90
+ }
91
+ ```
92
+
93
+ ## License
94
+ The project is licensed under the Apache 2.0 License and is restricted to uses that comply with the license agreements of Qwen, Llama3, and Clip.
added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
base_visual_tokenizer.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Union, Optional
2
+
3
+ import PIL.Image
4
+ import torch
5
+ from torch.nn.functional import softmax, gumbel_softmax
6
+ from transformers import PretrainedConfig, PreTrainedModel, AutoImageProcessor, AutoModel, AutoConfig
7
+
8
+
9
+ class BaseVisualTokenizerConfig(PretrainedConfig):
10
+ def __init__(self,
11
+ vocab_size=16384,
12
+ tokenize_function="softmax",
13
+ tau=1.0,
14
+ depths=None,
15
+ use_indicators=False,
16
+ drop_cls_token=False,
17
+ backbone_config: Optional[Union[PretrainedConfig, dict]] = None,
18
+ hidden_stride: int = 1,
19
+ **kwargs):
20
+ super().__init__(**kwargs)
21
+ self.vocab_size = vocab_size
22
+ self.tokenize_function = tokenize_function
23
+ self.tau = tau
24
+ if isinstance(depths, str):
25
+ depths = [int(x) for x in depths.split('|')]
26
+ self.depths = depths
27
+ self.backbone_kwargs = {}
28
+ self.use_indicators = use_indicators
29
+ self.drop_cls_token = drop_cls_token
30
+ if backbone_config is not None:
31
+ assert isinstance(backbone_config, (PretrainedConfig, dict)), \
32
+ f"expect `backbone_config` to be instance of PretrainedConfig or dict, but got {type(backbone_config)} type"
33
+ if not isinstance(backbone_config, PretrainedConfig):
34
+ model_type = backbone_config['model_type']
35
+ backbone_config.pop('model_type')
36
+ backbone_config = AutoConfig.for_model(model_type, **backbone_config)
37
+ self.backbone_config = backbone_config
38
+ self.hidden_stride = hidden_stride
39
+
40
+
41
+ class BaseVisualTokenizer(PreTrainedModel):
42
+ base_model_prefix = "backbone"
43
+ main_input_name = None
44
+ _image_processor_class = None
45
+ _image_processor_kwargs = {}
46
+ _backbone_class = None
47
+ _backbone_name_or_path = None
48
+
49
+ def __init__(self, config: BaseVisualTokenizerConfig, *inputs, **kwargs):
50
+ super().__init__(config, *inputs, **kwargs)
51
+ if kwargs.get('train_from_scratch'):
52
+ self.image_processor = self._image_processor_class.from_pretrained(self._backbone_name_or_path,
53
+ **self._image_processor_kwargs)
54
+ self.backbone = self._backbone_class.from_pretrained(self._backbone_name_or_path,
55
+ **self.config.backbone_kwargs)
56
+ self.config.backbone_config = self.backbone.config
57
+ else:
58
+ self.image_processor = AutoImageProcessor.from_pretrained(kwargs['image_processor_name_or_path'])
59
+ self.backbone = AutoModel.from_config(self.config.backbone_config)
60
+ self.head = None
61
+
62
+ assert all((self.image_processor.do_resize,
63
+ not getattr(self.image_processor, 'do_center_crop', False),
64
+ self.image_processor.do_rescale,
65
+ self.image_processor.do_normalize
66
+ )), f"image_processor `{self.image_processor}` is not supported currently"
67
+
68
+ def get_backbone(self):
69
+ return self.backbone
70
+
71
+ def get_monitor_tensors(self):
72
+ raise NotImplementedError
73
+
74
+ def get_image_processor(self):
75
+ return self.image_processor
76
+
77
+ def get_head(self):
78
+ return self.head
79
+
80
+ def get_image_size(self):
81
+ raise NotImplementedError
82
+
83
+ def preprocess_image(self, image: PIL.Image.Image, convert_to_rgb=True):
84
+ if convert_to_rgb and image.mode != 'RGB':
85
+ image = image.convert('RGB')
86
+
87
+ # first resize and preprocess
88
+ sides = self.get_image_size()
89
+ if sides[0] != sides[1]:
90
+ raise ValueError('get_image_size() returns non-square size')
91
+ side = sides[0]
92
+
93
+ width, height = image.size
94
+ if width == height:
95
+ new_width = new_height = side
96
+ elif width > height:
97
+ new_width = side
98
+ new_height = int(height / width * new_width)
99
+ else:
100
+ new_height = side
101
+ new_width = int(width / height * new_height)
102
+ new_size = dict(height=new_height, width=new_width)
103
+ pixel_values = self.image_processor.preprocess(image, size=new_size, return_tensors='pt')['pixel_values']
104
+
105
+ # then pad to square
106
+ square_values = torch.zeros([1, 3, side, side], dtype=pixel_values.dtype, device=pixel_values.device)
107
+ new_height, new_width = pixel_values.shape[2:]
108
+ if new_height == new_width:
109
+ square_values[:, :, :, :] = pixel_values
110
+ elif new_height > new_width:
111
+ from_index = (side - new_width) // 2
112
+ square_values[:, :, :, from_index:from_index + new_width] = pixel_values
113
+ else:
114
+ from_index = (side - new_height) // 2
115
+ square_values[:, :, from_index:from_index + new_height, :] = pixel_values
116
+
117
+ return square_values
118
+
119
+ def get_layer_norm(self):
120
+ return self.layer_norm
121
+
122
+ def tokenize(self, logits):
123
+ def st_argmax(y_soft, dim): # straight-through softmax
124
+ index = y_soft.max(dim, keepdim=True)[1]
125
+ y_hard = torch.zeros_like(y_soft, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0)
126
+ ret = y_hard - y_soft.detach() + y_soft
127
+ return ret
128
+
129
+ if self.config.tokenize_function == 'softmax':
130
+ tokens = softmax(logits, dim=-1)
131
+ elif self.config.tokenize_function == 'gumbel_argmax':
132
+ tokens = gumbel_softmax(logits, tau=self.config.tau, hard=True)
133
+ elif self.config.tokenize_function == 'st_argmax':
134
+ tokens = st_argmax(logits, dim=-1)
135
+ else:
136
+ raise ValueError(
137
+ f'Invalid `max_type`, expected softmax or gumbel_argmax or st_argmax, but got {self.config.tokenize_function}')
138
+ return tokens
clip_visual_tokenizer.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import datetime
2
+ from typing import Dict
3
+
4
+ import deepspeed
5
+ import torch
6
+ from torch import Tensor
7
+ from transformers import AutoConfig, AutoModel
8
+ from transformers import CLIPVisionModel, CLIPImageProcessor
9
+ from transformers.integrations import is_deepspeed_zero3_enabled
10
+
11
+ from .utils import BEGIN_LINE, END_LINE, rank0_print
12
+ from .base_visual_tokenizer import BaseVisualTokenizerConfig, BaseVisualTokenizer
13
+
14
+ MODEL_TYPE = "clip_visual_tokenizer"
15
+
16
+
17
+ class ClipVisualTokenizerConfig(BaseVisualTokenizerConfig):
18
+ model_type = MODEL_TYPE
19
+
20
+ def __init__(self, **kwargs):
21
+ super().__init__(**kwargs)
22
+ if self.depths:
23
+ assert len(self.depths) == 1
24
+ self.backbone_kwargs['num_hidden_layers'] = self.depths[0]
25
+
26
+
27
+ class ClipVisualTokenizer(BaseVisualTokenizer):
28
+ config_class = ClipVisualTokenizerConfig
29
+ supports_gradient_checkpointing = True
30
+ _no_split_modules = ["CLIPEncoderLayer"]
31
+ _image_processor_class = CLIPImageProcessor
32
+ _image_processor_kwargs = dict(do_center_crop=False)
33
+ _backbone_class = CLIPVisionModel
34
+ _backbone_name_or_path = "openai/clip-vit-large-patch14-336"
35
+
36
+ def __init__(self, config: ClipVisualTokenizerConfig = None, *inputs, **kwargs):
37
+ super().__init__(config, *inputs, **kwargs)
38
+ head_dim = self.config.vocab_size
39
+ if self.config.use_indicators:
40
+ head_dim -= 2 # reserved for two image indicator tokens
41
+ self.head = torch.nn.Sequential(
42
+ torch.nn.Linear(self.backbone.config.hidden_size, head_dim, bias=False),
43
+ torch.nn.LayerNorm(head_dim)
44
+ )
45
+
46
+ def re_init_layers(self, re_init_layer_begin):
47
+ layer_dict = self.get_re_init_layer_dict(re_init_layer_begin)
48
+ for name, layer in layer_dict.items():
49
+ rank0_print(BEGIN_LINE)
50
+ rank0_print(f'[{datetime.now()}] Before layer re-initialization of {name}: ')
51
+ for k, v in layer.named_parameters():
52
+ with deepspeed.zero.GatheredParameters([v]):
53
+ rank0_print(f'{k}: {v}')
54
+ with deepspeed.zero.GatheredParameters(list(layer.parameters(recurse=True)), modifier_rank=0):
55
+ if not is_deepspeed_zero3_enabled() or deepspeed.comm.get_rank() == 0:
56
+ layer.apply(self.backbone._init_weights)
57
+ rank0_print(f'[{datetime.now()}] After layer re-initialization of {name}:')
58
+ for k, v in layer.named_parameters():
59
+ with deepspeed.zero.GatheredParameters([v]):
60
+ rank0_print(f'{k}: {v}')
61
+ rank0_print(END_LINE)
62
+
63
+ def get_re_init_layer_dict(self, re_init_layer_begin: int) -> Dict[str, torch.nn.Module]:
64
+ assert re_init_layer_begin >= 0, "negative index is prohibited"
65
+ layer_dict = dict()
66
+ for i in range(re_init_layer_begin, self.backbone.config.num_hidden_layers):
67
+ layer_dict[f'backbone.vision_model.encoder.layers.{i}'] = self.backbone.vision_model.encoder.layers[i]
68
+ return layer_dict
69
+
70
+ def get_monitor_tensors(self):
71
+ return dict(
72
+ backbone_bottom=self.backbone.vision_model.encoder.layers[0].self_attn.k_proj.weight,
73
+ backbone_top=self.backbone.vision_model.encoder.layers[-1].self_attn.out_proj.weight,
74
+ head=self.head[0].weight
75
+ )
76
+
77
+ def get_image_size(self):
78
+ height = self.image_processor.crop_size["height"]
79
+ width = self.image_processor.crop_size["width"]
80
+ return height, width
81
+
82
+ def forward(self, pixel_values) -> Tensor: # [BatchSize, ImageShape] -> [BatchSize, #Token, VocabSize]
83
+ output = self.backbone(
84
+ pixel_values, output_hidden_states=True, return_dict=True)
85
+ features = output.last_hidden_state
86
+ if self.config.drop_cls_token:
87
+ features = features[:, 1:, :]
88
+ logits = self.head(features)
89
+ tokens = self.tokenize(logits)
90
+ if self.config.use_indicators:
91
+ # tokens' shape is [BatchSize, #Token, VocabSize-2], so padding with [BatchSize, #Token, 2], after
92
+ # which, tokens' shape should become [BatchSize, #Token, VocabSize]
93
+ batch_size, token_len, _ = tokens.shape
94
+ padding_tensor = torch.zeros(size=(batch_size, token_len, 2),
95
+ dtype=tokens.dtype,
96
+ device=tokens.device,
97
+ layout=tokens.layout,
98
+ requires_grad=False)
99
+ tokens = torch.cat((tokens, padding_tensor), dim=2)
100
+
101
+ # adding indicator tokens, after which tokens' shape should become [BatchSize, 1+#Token+1, VocabSize]
102
+ begin_indicator = torch.zeros(size=(batch_size, 1),
103
+ dtype=torch.long,
104
+ device=tokens.device,
105
+ requires_grad=False) + self.config.vocab_size - 2
106
+ begin_indicator_token = torch.nn.functional.one_hot(begin_indicator,
107
+ num_classes=self.config.vocab_size).to(
108
+ dtype=tokens.dtype)
109
+ end_indicator = torch.zeros(size=(batch_size, 1),
110
+ dtype=torch.long,
111
+ device=tokens.device,
112
+ requires_grad=False) + self.config.vocab_size - 1
113
+ end_indicator_token = torch.nn.functional.one_hot(end_indicator,
114
+ num_classes=self.config.vocab_size).to(dtype=tokens.dtype)
115
+ tokens = torch.cat((begin_indicator_token, tokens, end_indicator_token), dim=1)
116
+ return tokens
117
+
118
+
119
+ AutoConfig.register(MODEL_TYPE, ClipVisualTokenizerConfig)
120
+ AutoModel.register(ClipVisualTokenizerConfig, ClipVisualTokenizer)
config.json ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Ovis"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_ovis.OvisConfig",
7
+ "AutoModelForCausalLM": "modeling_ovis.Ovis"
8
+ },
9
+ "conversation_formatter_class": "QwenConversationFormatter",
10
+ "hidden_size": 4096,
11
+ "llm_config": {
12
+ "_name_or_path": "Qwen/Qwen1.5-7B-Chat",
13
+ "add_cross_attention": false,
14
+ "architectures": [
15
+ "Qwen2ForCausalLM"
16
+ ],
17
+ "attention_dropout": 0.0,
18
+ "bad_words_ids": null,
19
+ "begin_suppress_tokens": null,
20
+ "bos_token_id": 151643,
21
+ "chunk_size_feed_forward": 0,
22
+ "cross_attention_hidden_size": null,
23
+ "decoder_start_token_id": null,
24
+ "diversity_penalty": 0.0,
25
+ "do_sample": false,
26
+ "early_stopping": false,
27
+ "encoder_no_repeat_ngram_size": 0,
28
+ "eos_token_id": 151645,
29
+ "exponential_decay_length_penalty": null,
30
+ "finetuning_task": null,
31
+ "forced_bos_token_id": null,
32
+ "forced_eos_token_id": null,
33
+ "hidden_act": "silu",
34
+ "hidden_size": 4096,
35
+ "id2label": {
36
+ "0": "LABEL_0",
37
+ "1": "LABEL_1"
38
+ },
39
+ "initializer_range": 0.02,
40
+ "intermediate_size": 11008,
41
+ "is_decoder": false,
42
+ "is_encoder_decoder": false,
43
+ "label2id": {
44
+ "LABEL_0": 0,
45
+ "LABEL_1": 1
46
+ },
47
+ "length_penalty": 1.0,
48
+ "max_length": 20,
49
+ "max_position_embeddings": 32768,
50
+ "max_window_layers": 28,
51
+ "min_length": 0,
52
+ "model_type": "qwen2",
53
+ "no_repeat_ngram_size": 0,
54
+ "num_attention_heads": 32,
55
+ "num_beam_groups": 1,
56
+ "num_beams": 1,
57
+ "num_hidden_layers": 32,
58
+ "num_key_value_heads": 32,
59
+ "num_return_sequences": 1,
60
+ "output_attentions": false,
61
+ "output_hidden_states": false,
62
+ "output_scores": false,
63
+ "pad_token_id": null,
64
+ "prefix": null,
65
+ "problem_type": null,
66
+ "pruned_heads": {},
67
+ "remove_invalid_values": false,
68
+ "repetition_penalty": 1.0,
69
+ "return_dict": true,
70
+ "return_dict_in_generate": false,
71
+ "rms_norm_eps": 1e-06,
72
+ "rope_theta": 1000000.0,
73
+ "sep_token_id": null,
74
+ "sliding_window": 32768,
75
+ "suppress_tokens": null,
76
+ "task_specific_params": null,
77
+ "temperature": 1.0,
78
+ "tf_legacy_loss": false,
79
+ "tie_encoder_decoder": false,
80
+ "tie_word_embeddings": false,
81
+ "tokenizer_class": null,
82
+ "top_k": 50,
83
+ "top_p": 1.0,
84
+ "torch_dtype": "bfloat16",
85
+ "torchscript": false,
86
+ "typical_p": 1.0,
87
+ "use_bfloat16": false,
88
+ "use_cache": true,
89
+ "use_sliding_window": false,
90
+ "vocab_size": 151936
91
+ },
92
+ "model_type": "ovis",
93
+ "multimodal_max_length": 2048,
94
+ "torch_dtype": "bfloat16",
95
+ "transformers_version": "4.41.1",
96
+ "use_cache": true,
97
+ "visual_tokenizer_config": {
98
+ "_name_or_path": "",
99
+ "add_cross_attention": false,
100
+ "architectures": null,
101
+ "backbone_config": {
102
+ "_name_or_path": "openai/clip-vit-large-patch14-336",
103
+ "add_cross_attention": false,
104
+ "architectures": null,
105
+ "attention_dropout": 0.0,
106
+ "bad_words_ids": null,
107
+ "begin_suppress_tokens": null,
108
+ "bos_token_id": null,
109
+ "chunk_size_feed_forward": 0,
110
+ "cross_attention_hidden_size": null,
111
+ "decoder_start_token_id": null,
112
+ "diversity_penalty": 0.0,
113
+ "do_sample": false,
114
+ "dropout": 0.0,
115
+ "early_stopping": false,
116
+ "encoder_no_repeat_ngram_size": 0,
117
+ "eos_token_id": null,
118
+ "exponential_decay_length_penalty": null,
119
+ "finetuning_task": null,
120
+ "forced_bos_token_id": null,
121
+ "forced_eos_token_id": null,
122
+ "hidden_act": "quick_gelu",
123
+ "hidden_size": 1024,
124
+ "id2label": {
125
+ "0": "LABEL_0",
126
+ "1": "LABEL_1"
127
+ },
128
+ "image_size": 336,
129
+ "initializer_factor": 1.0,
130
+ "initializer_range": 0.02,
131
+ "intermediate_size": 4096,
132
+ "is_decoder": false,
133
+ "is_encoder_decoder": false,
134
+ "label2id": {
135
+ "LABEL_0": 0,
136
+ "LABEL_1": 1
137
+ },
138
+ "layer_norm_eps": 1e-05,
139
+ "length_penalty": 1.0,
140
+ "max_length": 20,
141
+ "min_length": 0,
142
+ "model_type": "clip_vision_model",
143
+ "no_repeat_ngram_size": 0,
144
+ "num_attention_heads": 16,
145
+ "num_beam_groups": 1,
146
+ "num_beams": 1,
147
+ "num_channels": 3,
148
+ "num_hidden_layers": 24,
149
+ "num_return_sequences": 1,
150
+ "output_attentions": false,
151
+ "output_hidden_states": false,
152
+ "output_scores": false,
153
+ "pad_token_id": null,
154
+ "patch_size": 14,
155
+ "prefix": null,
156
+ "problem_type": null,
157
+ "projection_dim": 768,
158
+ "pruned_heads": {},
159
+ "remove_invalid_values": false,
160
+ "repetition_penalty": 1.0,
161
+ "return_dict": true,
162
+ "return_dict_in_generate": false,
163
+ "sep_token_id": null,
164
+ "suppress_tokens": null,
165
+ "task_specific_params": null,
166
+ "temperature": 1.0,
167
+ "tf_legacy_loss": false,
168
+ "tie_encoder_decoder": false,
169
+ "tie_word_embeddings": true,
170
+ "tokenizer_class": null,
171
+ "top_k": 50,
172
+ "top_p": 1.0,
173
+ "torch_dtype": null,
174
+ "torchscript": false,
175
+ "typical_p": 1.0,
176
+ "use_bfloat16": false
177
+ },
178
+ "backbone_kwargs": {},
179
+ "bad_words_ids": null,
180
+ "begin_suppress_tokens": null,
181
+ "bos_token_id": null,
182
+ "chunk_size_feed_forward": 0,
183
+ "cross_attention_hidden_size": null,
184
+ "decoder_start_token_id": null,
185
+ "depths": null,
186
+ "diversity_penalty": 0.0,
187
+ "do_sample": false,
188
+ "drop_cls_token": true,
189
+ "early_stopping": false,
190
+ "encoder_no_repeat_ngram_size": 0,
191
+ "eos_token_id": null,
192
+ "exponential_decay_length_penalty": null,
193
+ "finetuning_task": null,
194
+ "forced_bos_token_id": null,
195
+ "forced_eos_token_id": null,
196
+ "hidden_stride": 1,
197
+ "id2label": {
198
+ "0": "LABEL_0",
199
+ "1": "LABEL_1"
200
+ },
201
+ "is_decoder": false,
202
+ "is_encoder_decoder": false,
203
+ "label2id": {
204
+ "LABEL_0": 0,
205
+ "LABEL_1": 1
206
+ },
207
+ "length_penalty": 1.0,
208
+ "max_length": 20,
209
+ "min_length": 0,
210
+ "model_type": "clip_visual_tokenizer",
211
+ "no_repeat_ngram_size": 0,
212
+ "num_beam_groups": 1,
213
+ "num_beams": 1,
214
+ "num_return_sequences": 1,
215
+ "output_attentions": false,
216
+ "output_hidden_states": false,
217
+ "output_scores": false,
218
+ "pad_token_id": null,
219
+ "prefix": null,
220
+ "problem_type": null,
221
+ "pruned_heads": {},
222
+ "remove_invalid_values": false,
223
+ "repetition_penalty": 1.0,
224
+ "return_dict": true,
225
+ "return_dict_in_generate": false,
226
+ "sep_token_id": null,
227
+ "suppress_tokens": null,
228
+ "task_specific_params": null,
229
+ "tau": 1.0,
230
+ "temperature": 1.0,
231
+ "tf_legacy_loss": false,
232
+ "tie_encoder_decoder": false,
233
+ "tie_word_embeddings": true,
234
+ "tokenize_function": "softmax",
235
+ "tokenizer_class": null,
236
+ "top_k": 50,
237
+ "top_p": 1.0,
238
+ "torch_dtype": null,
239
+ "torchscript": false,
240
+ "typical_p": 1.0,
241
+ "use_bfloat16": false,
242
+ "use_indicators": true,
243
+ "vocab_size": 131072
244
+ }
245
+ }
configuration_ovis.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Union, Optional
2
+
3
+ from transformers import PretrainedConfig, AutoConfig
4
+ from .visual_tokenizer import ClipVisualTokenizerConfig
5
+
6
+ class OvisConfig(PretrainedConfig):
7
+ model_type = "ovis"
8
+
9
+ def __init__(self,
10
+ llm_config: Optional[Union[PretrainedConfig, dict]] = None,
11
+ visual_tokenizer_config: Optional[Union[PretrainedConfig, dict]] = None,
12
+ multimodal_max_length=2048,
13
+ hidden_size=None,
14
+ conversation_formatter_class=None,
15
+ **kwargs):
16
+ super().__init__(**kwargs)
17
+ if llm_config is not None:
18
+ assert isinstance(llm_config, (PretrainedConfig, dict)), \
19
+ f"expect `llm_config` to be instance of PretrainedConfig or dict, but got {type(llm_config)} type"
20
+ if not isinstance(llm_config, PretrainedConfig):
21
+ model_type = llm_config['model_type']
22
+ llm_config.pop('model_type')
23
+ llm_config = AutoConfig.for_model(model_type, **llm_config)
24
+ self.llm_config = llm_config
25
+ if visual_tokenizer_config is not None:
26
+ assert isinstance(visual_tokenizer_config, (PretrainedConfig, dict)), \
27
+ f"expect `visual_tokenizer_config` to be instance of PretrainedConfig or dict, but got {type(visual_tokenizer_config)} type"
28
+ if not isinstance(visual_tokenizer_config, PretrainedConfig):
29
+ model_type = visual_tokenizer_config['model_type']
30
+ visual_tokenizer_config.pop('model_type')
31
+ visual_tokenizer_config = AutoConfig.for_model(model_type, **visual_tokenizer_config)
32
+ self.visual_tokenizer_config = visual_tokenizer_config
33
+ self.multimodal_max_length = multimodal_max_length
34
+ self.hidden_size = hidden_size
35
+ self.conversation_formatter_class = conversation_formatter_class
conversation_formatter.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import ABC, abstractmethod
2
+ from typing import List, Dict
3
+
4
+ import torch
5
+
6
+ from .utils import IMAGE_TOKEN_INDEX, IGNORE_INDEX, IMAGE_TOKEN
7
+
8
+
9
+ class ConversationFormatter(ABC):
10
+ support_tokenizer_types = None
11
+
12
+ def __init__(self, tokenizer):
13
+ tokenizer_type = type(tokenizer).__name__
14
+ assert tokenizer_type in self.support_tokenizer_types, \
15
+ f'Invalid tokenizer type, expected one from `{self.support_tokenizer_types}`, but got `{tokenizer_type}`'
16
+
17
+ @abstractmethod
18
+ def format(self, conversations: List[Dict], generation_preface=None):
19
+ pass
20
+
21
+ @abstractmethod
22
+ def format_query(self, query, generation_preface=""):
23
+ pass
24
+
25
+
26
+ class QwenConversationFormatter(ConversationFormatter):
27
+ support_tokenizer_types = ['QWenTokenizer', 'Qwen2TokenizerFast']
28
+
29
+ def __init__(self, tokenizer):
30
+ super().__init__(tokenizer)
31
+ self.tokenizer = tokenizer
32
+ self.from2role = {
33
+ "system": "<|im_start|>system\n",
34
+ "human": "<|im_start|>user\n",
35
+ "gpt": "<|im_start|>assistant\n",
36
+ }
37
+ self.gpt_token_num = None
38
+ self.im_end = "<|im_end|>"
39
+ self.image_symbol = IMAGE_TOKEN
40
+ self.image_token_index = IMAGE_TOKEN_INDEX
41
+ self.ignore_index = IGNORE_INDEX
42
+ self.default_system_prompt = "You are a helpful assistant."
43
+
44
+ def _tokenize_with_image_symbol(self, text):
45
+ text_chunks = [self.tokenizer(chunk, add_special_tokens=False).input_ids for chunk in
46
+ text.split(self.image_symbol)]
47
+ token_ids = []
48
+ num_chuck = len(text_chunks)
49
+ for i, chunk in enumerate(text_chunks):
50
+ token_ids.extend(chunk)
51
+ if i < num_chuck - 1:
52
+ token_ids.append(self.image_token_index)
53
+ return token_ids
54
+
55
+ def format(self, conversations: List[Dict], generation_preface=None):
56
+ if self.gpt_token_num is None:
57
+ self.gpt_token_num = len(self.tokenizer(self.from2role["gpt"], add_special_tokens=False).input_ids)
58
+
59
+ if conversations[0]["from"] != "system":
60
+ conversations.insert(0, {
61
+ "from": "system",
62
+ "value": self.default_system_prompt
63
+ })
64
+
65
+ if generation_preface is not None:
66
+ conversations.append({
67
+ "from": "gpt",
68
+ "value": generation_preface
69
+ })
70
+
71
+ prompt = ""
72
+ input_ids = []
73
+ labels = []
74
+ num_conversation = len(conversations)
75
+ for i, conversation in enumerate(conversations):
76
+ frm = conversation["from"]
77
+ role = self.from2role[frm]
78
+ message = conversation["value"]
79
+ text = role + message
80
+ if i < num_conversation - 1 or generation_preface is None:
81
+ text += self.im_end
82
+ if i < num_conversation - 1:
83
+ text += '\n'
84
+ prompt += text
85
+ token_ids = self._tokenize_with_image_symbol(text)
86
+ input_ids.extend(token_ids)
87
+ label_ids = [self.ignore_index] * len(token_ids)
88
+ if frm == "gpt":
89
+ label_ids[self.gpt_token_num:] = token_ids[self.gpt_token_num:]
90
+ labels.extend(label_ids)
91
+
92
+ assert self._tokenize_with_image_symbol(prompt) == input_ids
93
+ assert len(input_ids) == len(labels)
94
+ input_ids = torch.tensor(input_ids, dtype=torch.long)
95
+ labels = torch.tensor(labels, dtype=torch.long)
96
+
97
+ return prompt, input_ids, labels
98
+
99
+ def format_query(self, query, generation_preface=""):
100
+ prompt, input_ids, _ = self.format([{
101
+ "from": "human",
102
+ "value": query
103
+ }], generation_preface=generation_preface)
104
+
105
+ return prompt, input_ids
106
+
107
+
108
+ class Llama3ConversationFormatter(ConversationFormatter):
109
+ support_tokenizer_types = ['PreTrainedTokenizerFast']
110
+
111
+ def __init__(self, tokenizer):
112
+ super().__init__(tokenizer)
113
+ self.tokenizer = tokenizer
114
+ self.from2role = {
115
+ "system": "<|start_header_id|>system<|end_header_id|>\n\n",
116
+ "human": "<|start_header_id|>user<|end_header_id|>\n\n",
117
+ "gpt": "<|start_header_id|>assistant<|end_header_id|>\n\n",
118
+ }
119
+ self.gpt_token_num = None
120
+ self.im_end = "<|eot_id|>"
121
+ self.image_symbol = IMAGE_TOKEN
122
+ self.image_token_index = IMAGE_TOKEN_INDEX
123
+ self.ignore_index = IGNORE_INDEX
124
+ self.default_system_prompt = "You are a helpful and honest multimodal assistant."
125
+ self.bos_token = "<|begin_of_text|>"
126
+ self.bos_token_ids = None
127
+
128
+ def _tokenize_with_image_symbol(self, text):
129
+ text_chunks = [self.tokenizer(chunk, add_special_tokens=False).input_ids for chunk in
130
+ text.split(self.image_symbol)]
131
+ token_ids = []
132
+ num_chuck = len(text_chunks)
133
+ for i, chunk in enumerate(text_chunks):
134
+ token_ids.extend(chunk)
135
+ if i < num_chuck - 1:
136
+ token_ids.append(self.image_token_index)
137
+ return token_ids
138
+
139
+ def format(self, conversations: List[Dict], generation_preface=None):
140
+ if self.gpt_token_num is None:
141
+ self.gpt_token_num = len(self.tokenizer(self.from2role["gpt"], add_special_tokens=False).input_ids)
142
+
143
+ if self.bos_token_ids is None:
144
+ self.bos_token_ids = self.tokenizer(self.bos_token, add_special_tokens=False).input_ids
145
+
146
+ if conversations[0]["from"] != "system":
147
+ conversations.insert(0, {
148
+ "from": "system",
149
+ "value": self.default_system_prompt
150
+ })
151
+
152
+ if generation_preface is not None:
153
+ conversations.append({
154
+ "from": "gpt",
155
+ "value": generation_preface
156
+ })
157
+
158
+ prompt = "" + self.bos_token
159
+ input_ids = [] + self.bos_token_ids
160
+ labels = [] + [IGNORE_INDEX] * len(input_ids)
161
+ num_conversation = len(conversations)
162
+ for i, conversation in enumerate(conversations):
163
+ frm = conversation["from"]
164
+ role = self.from2role[frm]
165
+ message = conversation["value"].strip()
166
+ text = role + message
167
+ if i < num_conversation - 1 or generation_preface is None:
168
+ text += self.im_end
169
+ prompt += text
170
+ token_ids = self._tokenize_with_image_symbol(text)
171
+ input_ids.extend(token_ids)
172
+ label_ids = [self.ignore_index] * len(token_ids)
173
+ if frm == "gpt":
174
+ label_ids[self.gpt_token_num:] = token_ids[self.gpt_token_num:]
175
+ labels.extend(label_ids)
176
+
177
+ assert self._tokenize_with_image_symbol(prompt) == input_ids
178
+ assert len(input_ids) == len(labels)
179
+ input_ids = torch.tensor(input_ids, dtype=torch.long)
180
+ labels = torch.tensor(labels, dtype=torch.long)
181
+
182
+ return prompt, input_ids, labels
183
+
184
+ def format_query(self, query, generation_preface=""):
185
+ prompt, input_ids, _ = self.format([{
186
+ "from": "human",
187
+ "value": query
188
+ }], generation_preface=generation_preface)
189
+
190
+ return prompt, input_ids
generation_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "multimodal_max_length": 2048,
9
+ "pad_token_id": 151643,
10
+ "repetition_penalty": 1.05,
11
+ "temperature": 0.7,
12
+ "top_k": 20,
13
+ "top_p": 0.8,
14
+ "transformers_version": "4.41.1"
15
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
modeling_ovis.py ADDED
@@ -0,0 +1,289 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from datetime import datetime
3
+ from importlib import import_module
4
+ from typing import List, Union, Callable, Optional
5
+
6
+ import deepspeed
7
+ import torch
8
+ from torch import Tensor, LongTensor, IntTensor
9
+ from torch.nn import init
10
+ from transformers import PreTrainedModel, AutoConfig, AutoModel, AutoTokenizer, AutoModelForCausalLM
11
+ from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled, deepspeed_config
12
+
13
+ from .visual_tokenizer import ClipVisualTokenizer
14
+ from .configuration_ovis import OvisConfig
15
+ from .conversation_formatter import ConversationFormatter
16
+ from .utils import IGNORE_INDEX, IMAGE_TOKEN_INDEX, BEGIN_LINE, END_LINE, rank0_print
17
+
18
+ class VisualEmbedding(torch.nn.Embedding):
19
+ def forward(self, input: Tensor) -> Tensor:
20
+ if any((isinstance(input, LongTensor), isinstance(input, IntTensor))):
21
+ return super().forward(input)
22
+ return torch.matmul(input, self.weight)
23
+
24
+ def reset_parameters(self, mean=0., std=1.) -> None:
25
+ init.normal_(self.weight, mean=mean, std=std)
26
+ self._fill_padding_idx_with_zero()
27
+
28
+
29
+ class OvisPreTrainedModel(PreTrainedModel):
30
+ config_class = OvisConfig
31
+ base_model_prefix = "ovis"
32
+
33
+
34
+ class Ovis(OvisPreTrainedModel):
35
+
36
+ def __init__(self, config: OvisConfig, *inputs, **kwargs):
37
+ super().__init__(config, *inputs, **kwargs)
38
+ if kwargs.get('train_from_scratch'):
39
+ self.llm = AutoModelForCausalLM.from_pretrained(kwargs['llm_name_or_path'], token=None) # add token for gated model
40
+ self.generation_config = self.llm.generation_config
41
+ self.config.llm_config = self.llm.config
42
+ self.config.hidden_size = self.llm.config.hidden_size # for deepspeed auto configuration
43
+ self.text_tokenizer = AutoTokenizer.from_pretrained(kwargs['llm_name_or_path'], token=None) # add token for gated model
44
+ if self.text_tokenizer.pad_token_id is None and kwargs.get('pad_token_id') is not None:
45
+ self.text_tokenizer.pad_token_id = kwargs['pad_token_id']
46
+ if kwargs.get('visual_tokenizer_pretrained_path'):
47
+ self.visual_tokenizer = AutoModel.from_pretrained(kwargs['visual_tokenizer_pretrained_path'],
48
+ image_processor_name_or_path=kwargs[
49
+ 'visual_tokenizer_pretrained_path'])
50
+ else:
51
+ self.visual_tokenizer = AutoModel.from_config(self.config.visual_tokenizer_config,
52
+ train_from_scratch=True)
53
+ self.config.visual_tokenizer_config = self.visual_tokenizer.config
54
+ else:
55
+ self.llm = AutoModelForCausalLM.from_config(self.config.llm_config)
56
+ assert self.config.hidden_size == self.llm.config.hidden_size, "hidden size mismatch"
57
+ self.text_tokenizer = AutoTokenizer.from_pretrained(self.config.name_or_path)
58
+ self.visual_tokenizer = AutoModel.from_config(self.config.visual_tokenizer_config,
59
+ image_processor_name_or_path=self.config.name_or_path)
60
+
61
+ # initialize vte
62
+ if is_deepspeed_zero3_enabled():
63
+ with deepspeed.zero.Init(config_dict_or_path=deepspeed_config()):
64
+ self.vte = VisualEmbedding(self.config.visual_tokenizer_config.vocab_size, self.config.hidden_size)
65
+ else:
66
+ self.visual_tokenizer.to(device=self.llm.device)
67
+ self.vte = VisualEmbedding(self.config.visual_tokenizer_config.vocab_size, self.config.hidden_size,
68
+ device=self.visual_tokenizer.device, dtype=self.visual_tokenizer.dtype)
69
+
70
+ def _merge_modules(modules_list: tuple):
71
+ merged_modules = []
72
+ for modules in modules_list:
73
+ merged_modules.extend(modules if modules else [])
74
+ return merged_modules
75
+
76
+ self._no_split_modules = _merge_modules((self.llm._no_split_modules, self.visual_tokenizer._no_split_modules))
77
+ self._skip_keys_device_placement = self.llm._skip_keys_device_placement
78
+ self._keep_in_fp32_modules = _merge_modules(
79
+ (self.llm._keep_in_fp32_modules, self.visual_tokenizer._keep_in_fp32_modules))
80
+ self.is_parallelizable = all((self.llm.is_parallelizable, self.visual_tokenizer.is_parallelizable))
81
+ self.supports_gradient_checkpointing = all(
82
+ (self.llm.supports_gradient_checkpointing, self.visual_tokenizer.supports_gradient_checkpointing))
83
+ self._supports_flash_attn_2 = all(
84
+ (self.llm._supports_flash_attn_2, self.visual_tokenizer._supports_flash_attn_2))
85
+ self._supports_sdpa = all((self.llm._supports_sdpa, self.visual_tokenizer._supports_sdpa))
86
+ self._supports_cache_class = all((self.llm._supports_cache_class, self.visual_tokenizer._supports_cache_class))
87
+
88
+ def get_text_tokenizer(self):
89
+ return self.text_tokenizer
90
+
91
+ def get_visual_tokenizer(self):
92
+ return self.visual_tokenizer
93
+
94
+ def re_init_vte(self, mean, std):
95
+ vte = self.get_vte()
96
+ rank0_print(BEGIN_LINE)
97
+ rank0_print(f'[{datetime.now()}] Before re-initialization of vte: ')
98
+ with deepspeed.zero.GatheredParameters([vte.weight]):
99
+ rank0_print(f'vte.weight: {vte.weight}')
100
+ with deepspeed.zero.GatheredParameters([vte.weight], modifier_rank=0):
101
+ if not is_deepspeed_zero3_enabled() or deepspeed.comm.get_rank() == 0:
102
+ vte.reset_parameters(mean, std)
103
+ rank0_print(f'[{datetime.now()}] After re-initialization of vte:')
104
+ with deepspeed.zero.GatheredParameters([vte.weight]):
105
+ rank0_print(f'vte.weight: {vte.weight}')
106
+ rank0_print(END_LINE)
107
+
108
+ def get_monitor_tensors(self):
109
+ monitor_tensors = dict(
110
+ wte=self.get_wte().weight,
111
+ lm_head=self.get_lm_head().weight,
112
+ vte=self.get_vte().weight
113
+ )
114
+ monitor_tensors.update(
115
+ {f'visual_tokenizer_{k}': v for k, v in self.get_visual_tokenizer().get_monitor_tensors().items()})
116
+ return monitor_tensors
117
+
118
+ def get_lm_head(self):
119
+ return self.get_llm().get_output_embeddings()
120
+
121
+ def get_llm(self):
122
+ return self.llm
123
+
124
+ def get_vte(self):
125
+ return self.vte
126
+
127
+ def get_wte(self):
128
+ return self.llm.get_input_embeddings()
129
+
130
+ def get_conversation_formatter(self) -> ConversationFormatter:
131
+ if getattr(self, 'conversation_formatter', None) is None:
132
+ self.conversation_formatter = getattr(import_module(".conversation_formatter", __package__),
133
+ self.config.conversation_formatter_class)(self.text_tokenizer)
134
+ return self.conversation_formatter
135
+
136
+ def forward(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, pixel_values: List[Optional[torch.Tensor]],
137
+ labels: Optional[torch.Tensor] = None, **kwargs):
138
+ _, inputs_embeds, labels, attention_mask = self.merge_multimodal(
139
+ text_input_ids=input_ids,
140
+ text_attention_masks=attention_mask,
141
+ text_labels=labels,
142
+ pixel_values=pixel_values,
143
+ with_kv_cache=kwargs.get('past_key_values') is not None)
144
+ return self.llm(inputs_embeds=inputs_embeds, labels=labels, attention_mask=attention_mask, **kwargs)
145
+
146
+ def merge_multimodal(self, text_input_ids: torch.Tensor, text_attention_masks: torch.Tensor,
147
+ text_labels: Optional[torch.Tensor], pixel_values: List[Optional[torch.Tensor]],
148
+ with_kv_cache: bool = False):
149
+ if with_kv_cache:
150
+ return None, self.get_wte()(text_input_ids), text_labels, text_attention_masks
151
+ if self.training:
152
+ # When training, to be compatible with deepspeed zero, each sample has to include pixel_value tensor.
153
+ # For text-only sample, one can simply use a full zero tensor as pixel_value, which will be ignored
154
+ # (see below in this function); so, the gradient will not be affected.
155
+ num_images = [x.shape[0] for x in pixel_values]
156
+ visual_tokens = self.visual_tokenizer(torch.cat([x for x in pixel_values], dim=0))
157
+ visual_embeds = torch.split(self.get_vte()(visual_tokens).to(dtype=self.dtype),
158
+ split_size_or_sections=num_images, dim=0)
159
+ visual_input_ids = torch.split(torch.argmax(visual_tokens, dim=-1),
160
+ split_size_or_sections=num_images, dim=0)
161
+ visual_labels = [torch.full(x.shape, IGNORE_INDEX, dtype=torch.long) for x in visual_input_ids]
162
+ else:
163
+ # When inference, sample can include only text with `None` pixel_value
164
+ num_images = [x.shape[0] if x is not None else 0 for x in pixel_values]
165
+ if sum(num_images) > 0:
166
+ visual_tokens = self.visual_tokenizer(torch.cat([x for x in pixel_values if x is not None], dim=0))
167
+ visual_embeds = torch.split(self.get_vte()(visual_tokens).to(dtype=self.dtype),
168
+ split_size_or_sections=num_images, dim=0)
169
+ visual_input_ids = torch.split(torch.argmax(visual_tokens, dim=-1),
170
+ split_size_or_sections=num_images, dim=0)
171
+ visual_labels = [torch.full(x.shape, IGNORE_INDEX, dtype=torch.long) for x in visual_input_ids]
172
+ else:
173
+ # just placeholders
174
+ visual_embeds = [None] * len(num_images)
175
+ visual_input_ids = [None] * len(num_images)
176
+ visual_labels = [None] * len(num_images)
177
+ # just placeholders
178
+ text_labels = torch.full(text_input_ids.shape, IGNORE_INDEX, dtype=torch.long, device=text_input_ids.device)
179
+
180
+ input_embeds = []
181
+ attention_masks = []
182
+ labels = []
183
+ for text_input_id, text_label, text_attention_mask, visual_embed, visual_input_id, visual_label in zip(
184
+ text_input_ids, text_labels, text_attention_masks, visual_embeds, visual_input_ids, visual_labels
185
+ ):
186
+ image_token_mask = torch.eq(text_input_id, IMAGE_TOKEN_INDEX)
187
+ text_embed = self.get_wte()(torch.masked_fill(text_input_id, image_token_mask, 0))
188
+ image_token_positions = torch.where(image_token_mask)[0].tolist()
189
+ if len(image_token_positions) > 0:
190
+ input_embed_parts = []
191
+ attention_mask_parts = []
192
+ label_parts = []
193
+ prev_image_token_position = -1
194
+ for index, image_token_position in enumerate(image_token_positions):
195
+ input_embed_parts.append(
196
+ text_embed[prev_image_token_position + 1:image_token_position, :])
197
+ label_parts.append(
198
+ text_label[prev_image_token_position + 1:image_token_position])
199
+ attention_mask_parts.append(
200
+ text_attention_mask[prev_image_token_position + 1:image_token_position])
201
+ input_embed_parts.append(visual_embed[index])
202
+ attention_mask_parts.append(
203
+ torch.ones_like(visual_label[index], device=text_label.device, dtype=torch.bool))
204
+ label_parts.append(visual_label[index].to(device=text_label.device))
205
+ prev_image_token_position = image_token_position
206
+ if prev_image_token_position + 1 < text_input_id.shape[0]:
207
+ input_embed_parts.append(
208
+ text_embed[prev_image_token_position + 1:, :])
209
+ attention_mask_parts.append(
210
+ text_attention_mask[prev_image_token_position + 1:])
211
+ label_parts.append(
212
+ text_label[prev_image_token_position + 1:])
213
+ input_embed = torch.cat(input_embed_parts, dim=0)
214
+ attention_mask = torch.cat(attention_mask_parts, dim=0)
215
+ label = torch.cat(label_parts, dim=0)
216
+ else:
217
+ input_embed = text_embed
218
+ attention_mask = text_attention_mask
219
+ label = text_label
220
+ if self.training:
221
+ # Make visual_embed involved in the backward graph, to be compatible with deepspeed zero and ddp.
222
+ input_embed += torch.sum(visual_embed * 0.0)
223
+ input_embeds.append(input_embed)
224
+ attention_masks.append(attention_mask)
225
+ labels.append(label)
226
+
227
+ batch_input_embeds = torch.nn.utils.rnn.pad_sequence(input_embeds, batch_first=True, padding_value=0.0)[:,
228
+ :self.config.multimodal_max_length, :]
229
+ batch_attention_mask = torch.nn.utils.rnn.pad_sequence(attention_masks, batch_first=True, padding_value=False)[
230
+ :,
231
+ :self.config.multimodal_max_length]
232
+ batch_labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX)[:,
233
+ :self.config.multimodal_max_length]
234
+
235
+ return visual_input_ids, batch_input_embeds, batch_labels, batch_attention_mask
236
+
237
+ def save_pretrained(
238
+ self,
239
+ save_directory: Union[str, os.PathLike],
240
+ is_main_process: bool = True,
241
+ state_dict: Optional[dict] = None,
242
+ save_function: Callable = torch.save,
243
+ push_to_hub: bool = False,
244
+ max_shard_size: Union[int, str] = "5GB",
245
+ safe_serialization: bool = True,
246
+ variant: Optional[str] = None,
247
+ token: Optional[Union[str, bool]] = None,
248
+ save_peft_format: bool = True,
249
+ **kwargs,
250
+ ):
251
+ super().save_pretrained(save_directory,
252
+ is_main_process=is_main_process,
253
+ state_dict=state_dict,
254
+ save_function=save_function,
255
+ safe_serialization=safe_serialization)
256
+ self.get_text_tokenizer().save_pretrained(save_directory)
257
+ self.get_visual_tokenizer().get_image_processor().save_pretrained(save_directory)
258
+
259
+ # uncomment the following will additionally save a separate visual tokenizer
260
+ # visual_tokenizer_directory = os.path.join(save_directory, 'visual_tokenizer')
261
+ # self.get_visual_tokenizer().save_pretrained(visual_tokenizer_directory,
262
+ # is_main_process=is_main_process,
263
+ # state_dict=None,
264
+ # save_function=save_function,
265
+ # safe_serialization=safe_serialization)
266
+ # self.get_visual_tokenizer().get_image_processor().save_pretrained(visual_tokenizer_directory)
267
+
268
+ # TODO: support batch generation
269
+ def prepare_inputs_for_generation(
270
+ self, input_ids, pixel_values, attention_mask, past_key_values=None, inputs_embeds=None, **kwargs):
271
+ if past_key_values is not None:
272
+ input_ids = input_ids[:, -1:]
273
+ attention_mask = attention_mask[:, -1:]
274
+
275
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
276
+ if inputs_embeds is not None and past_key_values is None:
277
+ model_inputs = {"inputs_embeds": inputs_embeds}
278
+ else:
279
+ model_inputs = {"input_ids": input_ids}
280
+
281
+ model_inputs.update(
282
+ {
283
+ "past_key_values": past_key_values,
284
+ "use_cache": kwargs.get("use_cache"),
285
+ "attention_mask": attention_mask,
286
+ "pixel_values": pixel_values
287
+ }
288
+ )
289
+ return model_inputs
preprocessor_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_valid_processor_keys": [
3
+ "images",
4
+ "do_resize",
5
+ "size",
6
+ "resample",
7
+ "do_center_crop",
8
+ "crop_size",
9
+ "do_rescale",
10
+ "rescale_factor",
11
+ "do_normalize",
12
+ "image_mean",
13
+ "image_std",
14
+ "do_convert_rgb",
15
+ "return_tensors",
16
+ "data_format",
17
+ "input_data_format"
18
+ ],
19
+ "crop_size": {
20
+ "height": 336,
21
+ "width": 336
22
+ },
23
+ "do_center_crop": false,
24
+ "do_convert_rgb": true,
25
+ "do_normalize": true,
26
+ "do_rescale": true,
27
+ "do_resize": true,
28
+ "image_mean": [
29
+ 0.48145466,
30
+ 0.4578275,
31
+ 0.40821073
32
+ ],
33
+ "image_processor_type": "CLIPImageProcessor",
34
+ "image_std": [
35
+ 0.26862954,
36
+ 0.26130258,
37
+ 0.27577711
38
+ ],
39
+ "resample": 3,
40
+ "rescale_factor": 0.00392156862745098,
41
+ "size": {
42
+ "shortest_edge": 336
43
+ }
44
+ }
pytorch_model-00001-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e687fcc19ec389ccd887de95af76503ec6036fc127d7dec62d5bd60fad1978d6
3
+ size 4988508819
pytorch_model-00002-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5d35d3a58e406e898bc019a5bc9dd128c24021a66278d424ab5e63c5e025143
3
+ size 4981277820
pytorch_model-00003-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6b23ff0b5ab2b06379f6f648164c88dc5d89df30427f81d779314d594095564
3
+ size 4228335437
pytorch_model-00004-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0082ecc301ec996fe1bd40d546964cc17394213fd790d216743eb8bc76caae26
3
+ size 3194519786
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,789 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 17392361464
4
+ },
5
+ "weight_map": {
6
+ "llm.lm_head.weight": "pytorch_model-00004-of-00004.bin",
7
+ "llm.model.embed_tokens.weight": "pytorch_model-00001-of-00004.bin",
8
+ "llm.model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
9
+ "llm.model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
10
+ "llm.model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
11
+ "llm.model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
12
+ "llm.model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
13
+ "llm.model.layers.0.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
14
+ "llm.model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
15
+ "llm.model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
16
+ "llm.model.layers.0.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
17
+ "llm.model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
18
+ "llm.model.layers.0.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
19
+ "llm.model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
20
+ "llm.model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
21
+ "llm.model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
22
+ "llm.model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
23
+ "llm.model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
24
+ "llm.model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
25
+ "llm.model.layers.1.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
26
+ "llm.model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
27
+ "llm.model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
28
+ "llm.model.layers.1.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
29
+ "llm.model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
30
+ "llm.model.layers.1.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
31
+ "llm.model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
32
+ "llm.model.layers.10.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
33
+ "llm.model.layers.10.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
34
+ "llm.model.layers.10.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
35
+ "llm.model.layers.10.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
36
+ "llm.model.layers.10.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
37
+ "llm.model.layers.10.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
38
+ "llm.model.layers.10.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
39
+ "llm.model.layers.10.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
40
+ "llm.model.layers.10.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
41
+ "llm.model.layers.10.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
42
+ "llm.model.layers.10.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
43
+ "llm.model.layers.10.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
44
+ "llm.model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
45
+ "llm.model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
46
+ "llm.model.layers.11.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
47
+ "llm.model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
48
+ "llm.model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
49
+ "llm.model.layers.11.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
50
+ "llm.model.layers.11.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
51
+ "llm.model.layers.11.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
52
+ "llm.model.layers.11.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
53
+ "llm.model.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
54
+ "llm.model.layers.11.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
55
+ "llm.model.layers.11.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
56
+ "llm.model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
57
+ "llm.model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
58
+ "llm.model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
59
+ "llm.model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
60
+ "llm.model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
61
+ "llm.model.layers.12.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
62
+ "llm.model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
63
+ "llm.model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
64
+ "llm.model.layers.12.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
65
+ "llm.model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
66
+ "llm.model.layers.12.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
67
+ "llm.model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
68
+ "llm.model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
69
+ "llm.model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
70
+ "llm.model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
71
+ "llm.model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
72
+ "llm.model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
73
+ "llm.model.layers.13.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
74
+ "llm.model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
75
+ "llm.model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
76
+ "llm.model.layers.13.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
77
+ "llm.model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
78
+ "llm.model.layers.13.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
79
+ "llm.model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
80
+ "llm.model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
81
+ "llm.model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
82
+ "llm.model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
83
+ "llm.model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
84
+ "llm.model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
85
+ "llm.model.layers.14.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
86
+ "llm.model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
87
+ "llm.model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
88
+ "llm.model.layers.14.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
89
+ "llm.model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
90
+ "llm.model.layers.14.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
91
+ "llm.model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
92
+ "llm.model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
93
+ "llm.model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
94
+ "llm.model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
95
+ "llm.model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
96
+ "llm.model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
97
+ "llm.model.layers.15.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
98
+ "llm.model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
99
+ "llm.model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
100
+ "llm.model.layers.15.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
101
+ "llm.model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
102
+ "llm.model.layers.15.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
103
+ "llm.model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
104
+ "llm.model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
105
+ "llm.model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
106
+ "llm.model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
107
+ "llm.model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
108
+ "llm.model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
109
+ "llm.model.layers.16.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
110
+ "llm.model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
111
+ "llm.model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
112
+ "llm.model.layers.16.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
113
+ "llm.model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
114
+ "llm.model.layers.16.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
115
+ "llm.model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
116
+ "llm.model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
117
+ "llm.model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
118
+ "llm.model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
119
+ "llm.model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
120
+ "llm.model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
121
+ "llm.model.layers.17.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
122
+ "llm.model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
123
+ "llm.model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
124
+ "llm.model.layers.17.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
125
+ "llm.model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
126
+ "llm.model.layers.17.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
127
+ "llm.model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
128
+ "llm.model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
129
+ "llm.model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
130
+ "llm.model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
131
+ "llm.model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
132
+ "llm.model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
133
+ "llm.model.layers.18.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
134
+ "llm.model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
135
+ "llm.model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
136
+ "llm.model.layers.18.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
137
+ "llm.model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
138
+ "llm.model.layers.18.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
139
+ "llm.model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
140
+ "llm.model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
141
+ "llm.model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
142
+ "llm.model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
143
+ "llm.model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
144
+ "llm.model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
145
+ "llm.model.layers.19.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
146
+ "llm.model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
147
+ "llm.model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
148
+ "llm.model.layers.19.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
149
+ "llm.model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
150
+ "llm.model.layers.19.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
151
+ "llm.model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
152
+ "llm.model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
153
+ "llm.model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
154
+ "llm.model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
155
+ "llm.model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
156
+ "llm.model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
157
+ "llm.model.layers.2.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
158
+ "llm.model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
159
+ "llm.model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
160
+ "llm.model.layers.2.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
161
+ "llm.model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
162
+ "llm.model.layers.2.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
163
+ "llm.model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
164
+ "llm.model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
165
+ "llm.model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
166
+ "llm.model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
167
+ "llm.model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
168
+ "llm.model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
169
+ "llm.model.layers.20.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
170
+ "llm.model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
171
+ "llm.model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
172
+ "llm.model.layers.20.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
173
+ "llm.model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
174
+ "llm.model.layers.20.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
175
+ "llm.model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
176
+ "llm.model.layers.21.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
177
+ "llm.model.layers.21.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
178
+ "llm.model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
179
+ "llm.model.layers.21.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
180
+ "llm.model.layers.21.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
181
+ "llm.model.layers.21.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
182
+ "llm.model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
183
+ "llm.model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
184
+ "llm.model.layers.21.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
185
+ "llm.model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
186
+ "llm.model.layers.21.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
187
+ "llm.model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
188
+ "llm.model.layers.22.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
189
+ "llm.model.layers.22.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
190
+ "llm.model.layers.22.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
191
+ "llm.model.layers.22.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
192
+ "llm.model.layers.22.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
193
+ "llm.model.layers.22.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
194
+ "llm.model.layers.22.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
195
+ "llm.model.layers.22.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
196
+ "llm.model.layers.22.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
197
+ "llm.model.layers.22.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
198
+ "llm.model.layers.22.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
199
+ "llm.model.layers.22.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
200
+ "llm.model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
201
+ "llm.model.layers.23.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
202
+ "llm.model.layers.23.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
203
+ "llm.model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
204
+ "llm.model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
205
+ "llm.model.layers.23.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
206
+ "llm.model.layers.23.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
207
+ "llm.model.layers.23.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
208
+ "llm.model.layers.23.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
209
+ "llm.model.layers.23.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
210
+ "llm.model.layers.23.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
211
+ "llm.model.layers.23.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
212
+ "llm.model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
213
+ "llm.model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
214
+ "llm.model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
215
+ "llm.model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
216
+ "llm.model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
217
+ "llm.model.layers.24.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
218
+ "llm.model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
219
+ "llm.model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
220
+ "llm.model.layers.24.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
221
+ "llm.model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
222
+ "llm.model.layers.24.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
223
+ "llm.model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
224
+ "llm.model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
225
+ "llm.model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
226
+ "llm.model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
227
+ "llm.model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
228
+ "llm.model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
229
+ "llm.model.layers.25.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
230
+ "llm.model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
231
+ "llm.model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
232
+ "llm.model.layers.25.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
233
+ "llm.model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
234
+ "llm.model.layers.25.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
235
+ "llm.model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
236
+ "llm.model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
237
+ "llm.model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
238
+ "llm.model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
239
+ "llm.model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
240
+ "llm.model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
241
+ "llm.model.layers.26.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
242
+ "llm.model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
243
+ "llm.model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
244
+ "llm.model.layers.26.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
245
+ "llm.model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
246
+ "llm.model.layers.26.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
247
+ "llm.model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
248
+ "llm.model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
249
+ "llm.model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
250
+ "llm.model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
251
+ "llm.model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
252
+ "llm.model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
253
+ "llm.model.layers.27.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
254
+ "llm.model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
255
+ "llm.model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
256
+ "llm.model.layers.27.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
257
+ "llm.model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
258
+ "llm.model.layers.27.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
259
+ "llm.model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
260
+ "llm.model.layers.28.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
261
+ "llm.model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
262
+ "llm.model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
263
+ "llm.model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
264
+ "llm.model.layers.28.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
265
+ "llm.model.layers.28.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
266
+ "llm.model.layers.28.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
267
+ "llm.model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
268
+ "llm.model.layers.28.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
269
+ "llm.model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
270
+ "llm.model.layers.28.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
271
+ "llm.model.layers.28.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
272
+ "llm.model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
273
+ "llm.model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
274
+ "llm.model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
275
+ "llm.model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
276
+ "llm.model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
277
+ "llm.model.layers.29.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
278
+ "llm.model.layers.29.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
279
+ "llm.model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
280
+ "llm.model.layers.29.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
281
+ "llm.model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
282
+ "llm.model.layers.29.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
283
+ "llm.model.layers.29.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
284
+ "llm.model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
285
+ "llm.model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
286
+ "llm.model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
287
+ "llm.model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
288
+ "llm.model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
289
+ "llm.model.layers.3.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
290
+ "llm.model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
291
+ "llm.model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
292
+ "llm.model.layers.3.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
293
+ "llm.model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
294
+ "llm.model.layers.3.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
295
+ "llm.model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
296
+ "llm.model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
297
+ "llm.model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
298
+ "llm.model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
299
+ "llm.model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
300
+ "llm.model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
301
+ "llm.model.layers.30.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
302
+ "llm.model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
303
+ "llm.model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
304
+ "llm.model.layers.30.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
305
+ "llm.model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
306
+ "llm.model.layers.30.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
307
+ "llm.model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
308
+ "llm.model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
309
+ "llm.model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
310
+ "llm.model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
311
+ "llm.model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
312
+ "llm.model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
313
+ "llm.model.layers.31.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
314
+ "llm.model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
315
+ "llm.model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
316
+ "llm.model.layers.31.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
317
+ "llm.model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
318
+ "llm.model.layers.31.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
319
+ "llm.model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
320
+ "llm.model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
321
+ "llm.model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
322
+ "llm.model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
323
+ "llm.model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
324
+ "llm.model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
325
+ "llm.model.layers.4.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
326
+ "llm.model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
327
+ "llm.model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
328
+ "llm.model.layers.4.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
329
+ "llm.model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
330
+ "llm.model.layers.4.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
331
+ "llm.model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
332
+ "llm.model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
333
+ "llm.model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
334
+ "llm.model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
335
+ "llm.model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
336
+ "llm.model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
337
+ "llm.model.layers.5.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
338
+ "llm.model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
339
+ "llm.model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
340
+ "llm.model.layers.5.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
341
+ "llm.model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
342
+ "llm.model.layers.5.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
343
+ "llm.model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
344
+ "llm.model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
345
+ "llm.model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
346
+ "llm.model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
347
+ "llm.model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
348
+ "llm.model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
349
+ "llm.model.layers.6.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
350
+ "llm.model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
351
+ "llm.model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
352
+ "llm.model.layers.6.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
353
+ "llm.model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
354
+ "llm.model.layers.6.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
355
+ "llm.model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
356
+ "llm.model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
357
+ "llm.model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
358
+ "llm.model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
359
+ "llm.model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
360
+ "llm.model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
361
+ "llm.model.layers.7.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
362
+ "llm.model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
363
+ "llm.model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
364
+ "llm.model.layers.7.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
365
+ "llm.model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
366
+ "llm.model.layers.7.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
367
+ "llm.model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
368
+ "llm.model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
369
+ "llm.model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
370
+ "llm.model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
371
+ "llm.model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
372
+ "llm.model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
373
+ "llm.model.layers.8.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
374
+ "llm.model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
375
+ "llm.model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
376
+ "llm.model.layers.8.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
377
+ "llm.model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
378
+ "llm.model.layers.8.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
379
+ "llm.model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
380
+ "llm.model.layers.9.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
381
+ "llm.model.layers.9.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
382
+ "llm.model.layers.9.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
383
+ "llm.model.layers.9.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
384
+ "llm.model.layers.9.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
385
+ "llm.model.layers.9.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
386
+ "llm.model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
387
+ "llm.model.layers.9.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
388
+ "llm.model.layers.9.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
389
+ "llm.model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
390
+ "llm.model.layers.9.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
391
+ "llm.model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
392
+ "llm.model.norm.weight": "pytorch_model-00003-of-00004.bin",
393
+ "visual_tokenizer.backbone.vision_model.embeddings.class_embedding": "pytorch_model-00004-of-00004.bin",
394
+ "visual_tokenizer.backbone.vision_model.embeddings.patch_embedding.weight": "pytorch_model-00004-of-00004.bin",
395
+ "visual_tokenizer.backbone.vision_model.embeddings.position_embedding.weight": "pytorch_model-00004-of-00004.bin",
396
+ "visual_tokenizer.backbone.vision_model.encoder.layers.0.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
397
+ "visual_tokenizer.backbone.vision_model.encoder.layers.0.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
398
+ "visual_tokenizer.backbone.vision_model.encoder.layers.0.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
399
+ "visual_tokenizer.backbone.vision_model.encoder.layers.0.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
400
+ "visual_tokenizer.backbone.vision_model.encoder.layers.0.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
401
+ "visual_tokenizer.backbone.vision_model.encoder.layers.0.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
402
+ "visual_tokenizer.backbone.vision_model.encoder.layers.0.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
403
+ "visual_tokenizer.backbone.vision_model.encoder.layers.0.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
404
+ "visual_tokenizer.backbone.vision_model.encoder.layers.0.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
405
+ "visual_tokenizer.backbone.vision_model.encoder.layers.0.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
406
+ "visual_tokenizer.backbone.vision_model.encoder.layers.0.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
407
+ "visual_tokenizer.backbone.vision_model.encoder.layers.0.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
408
+ "visual_tokenizer.backbone.vision_model.encoder.layers.0.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
409
+ "visual_tokenizer.backbone.vision_model.encoder.layers.0.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
410
+ "visual_tokenizer.backbone.vision_model.encoder.layers.0.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
411
+ "visual_tokenizer.backbone.vision_model.encoder.layers.0.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
412
+ "visual_tokenizer.backbone.vision_model.encoder.layers.1.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
413
+ "visual_tokenizer.backbone.vision_model.encoder.layers.1.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
414
+ "visual_tokenizer.backbone.vision_model.encoder.layers.1.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
415
+ "visual_tokenizer.backbone.vision_model.encoder.layers.1.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
416
+ "visual_tokenizer.backbone.vision_model.encoder.layers.1.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
417
+ "visual_tokenizer.backbone.vision_model.encoder.layers.1.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
418
+ "visual_tokenizer.backbone.vision_model.encoder.layers.1.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
419
+ "visual_tokenizer.backbone.vision_model.encoder.layers.1.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
420
+ "visual_tokenizer.backbone.vision_model.encoder.layers.1.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
421
+ "visual_tokenizer.backbone.vision_model.encoder.layers.1.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
422
+ "visual_tokenizer.backbone.vision_model.encoder.layers.1.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
423
+ "visual_tokenizer.backbone.vision_model.encoder.layers.1.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
424
+ "visual_tokenizer.backbone.vision_model.encoder.layers.1.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
425
+ "visual_tokenizer.backbone.vision_model.encoder.layers.1.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
426
+ "visual_tokenizer.backbone.vision_model.encoder.layers.1.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
427
+ "visual_tokenizer.backbone.vision_model.encoder.layers.1.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
428
+ "visual_tokenizer.backbone.vision_model.encoder.layers.10.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
429
+ "visual_tokenizer.backbone.vision_model.encoder.layers.10.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
430
+ "visual_tokenizer.backbone.vision_model.encoder.layers.10.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
431
+ "visual_tokenizer.backbone.vision_model.encoder.layers.10.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
432
+ "visual_tokenizer.backbone.vision_model.encoder.layers.10.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
433
+ "visual_tokenizer.backbone.vision_model.encoder.layers.10.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
434
+ "visual_tokenizer.backbone.vision_model.encoder.layers.10.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
435
+ "visual_tokenizer.backbone.vision_model.encoder.layers.10.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
436
+ "visual_tokenizer.backbone.vision_model.encoder.layers.10.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
437
+ "visual_tokenizer.backbone.vision_model.encoder.layers.10.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
438
+ "visual_tokenizer.backbone.vision_model.encoder.layers.10.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
439
+ "visual_tokenizer.backbone.vision_model.encoder.layers.10.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
440
+ "visual_tokenizer.backbone.vision_model.encoder.layers.10.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
441
+ "visual_tokenizer.backbone.vision_model.encoder.layers.10.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
442
+ "visual_tokenizer.backbone.vision_model.encoder.layers.10.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
443
+ "visual_tokenizer.backbone.vision_model.encoder.layers.10.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
444
+ "visual_tokenizer.backbone.vision_model.encoder.layers.11.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
445
+ "visual_tokenizer.backbone.vision_model.encoder.layers.11.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
446
+ "visual_tokenizer.backbone.vision_model.encoder.layers.11.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
447
+ "visual_tokenizer.backbone.vision_model.encoder.layers.11.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
448
+ "visual_tokenizer.backbone.vision_model.encoder.layers.11.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
449
+ "visual_tokenizer.backbone.vision_model.encoder.layers.11.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
450
+ "visual_tokenizer.backbone.vision_model.encoder.layers.11.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
451
+ "visual_tokenizer.backbone.vision_model.encoder.layers.11.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
452
+ "visual_tokenizer.backbone.vision_model.encoder.layers.11.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
453
+ "visual_tokenizer.backbone.vision_model.encoder.layers.11.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
454
+ "visual_tokenizer.backbone.vision_model.encoder.layers.11.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
455
+ "visual_tokenizer.backbone.vision_model.encoder.layers.11.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
456
+ "visual_tokenizer.backbone.vision_model.encoder.layers.11.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
457
+ "visual_tokenizer.backbone.vision_model.encoder.layers.11.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
458
+ "visual_tokenizer.backbone.vision_model.encoder.layers.11.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
459
+ "visual_tokenizer.backbone.vision_model.encoder.layers.11.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
460
+ "visual_tokenizer.backbone.vision_model.encoder.layers.12.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
461
+ "visual_tokenizer.backbone.vision_model.encoder.layers.12.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
462
+ "visual_tokenizer.backbone.vision_model.encoder.layers.12.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
463
+ "visual_tokenizer.backbone.vision_model.encoder.layers.12.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
464
+ "visual_tokenizer.backbone.vision_model.encoder.layers.12.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
465
+ "visual_tokenizer.backbone.vision_model.encoder.layers.12.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
466
+ "visual_tokenizer.backbone.vision_model.encoder.layers.12.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
467
+ "visual_tokenizer.backbone.vision_model.encoder.layers.12.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
468
+ "visual_tokenizer.backbone.vision_model.encoder.layers.12.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
469
+ "visual_tokenizer.backbone.vision_model.encoder.layers.12.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
470
+ "visual_tokenizer.backbone.vision_model.encoder.layers.12.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
471
+ "visual_tokenizer.backbone.vision_model.encoder.layers.12.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
472
+ "visual_tokenizer.backbone.vision_model.encoder.layers.12.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
473
+ "visual_tokenizer.backbone.vision_model.encoder.layers.12.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
474
+ "visual_tokenizer.backbone.vision_model.encoder.layers.12.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
475
+ "visual_tokenizer.backbone.vision_model.encoder.layers.12.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
476
+ "visual_tokenizer.backbone.vision_model.encoder.layers.13.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
477
+ "visual_tokenizer.backbone.vision_model.encoder.layers.13.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
478
+ "visual_tokenizer.backbone.vision_model.encoder.layers.13.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
479
+ "visual_tokenizer.backbone.vision_model.encoder.layers.13.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
480
+ "visual_tokenizer.backbone.vision_model.encoder.layers.13.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
481
+ "visual_tokenizer.backbone.vision_model.encoder.layers.13.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
482
+ "visual_tokenizer.backbone.vision_model.encoder.layers.13.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
483
+ "visual_tokenizer.backbone.vision_model.encoder.layers.13.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
484
+ "visual_tokenizer.backbone.vision_model.encoder.layers.13.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
485
+ "visual_tokenizer.backbone.vision_model.encoder.layers.13.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
486
+ "visual_tokenizer.backbone.vision_model.encoder.layers.13.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
487
+ "visual_tokenizer.backbone.vision_model.encoder.layers.13.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
488
+ "visual_tokenizer.backbone.vision_model.encoder.layers.13.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
489
+ "visual_tokenizer.backbone.vision_model.encoder.layers.13.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
490
+ "visual_tokenizer.backbone.vision_model.encoder.layers.13.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
491
+ "visual_tokenizer.backbone.vision_model.encoder.layers.13.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
492
+ "visual_tokenizer.backbone.vision_model.encoder.layers.14.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
493
+ "visual_tokenizer.backbone.vision_model.encoder.layers.14.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
494
+ "visual_tokenizer.backbone.vision_model.encoder.layers.14.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
495
+ "visual_tokenizer.backbone.vision_model.encoder.layers.14.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
496
+ "visual_tokenizer.backbone.vision_model.encoder.layers.14.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
497
+ "visual_tokenizer.backbone.vision_model.encoder.layers.14.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
498
+ "visual_tokenizer.backbone.vision_model.encoder.layers.14.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
499
+ "visual_tokenizer.backbone.vision_model.encoder.layers.14.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
500
+ "visual_tokenizer.backbone.vision_model.encoder.layers.14.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
501
+ "visual_tokenizer.backbone.vision_model.encoder.layers.14.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
502
+ "visual_tokenizer.backbone.vision_model.encoder.layers.14.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
503
+ "visual_tokenizer.backbone.vision_model.encoder.layers.14.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
504
+ "visual_tokenizer.backbone.vision_model.encoder.layers.14.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
505
+ "visual_tokenizer.backbone.vision_model.encoder.layers.14.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
506
+ "visual_tokenizer.backbone.vision_model.encoder.layers.14.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
507
+ "visual_tokenizer.backbone.vision_model.encoder.layers.14.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
508
+ "visual_tokenizer.backbone.vision_model.encoder.layers.15.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
509
+ "visual_tokenizer.backbone.vision_model.encoder.layers.15.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
510
+ "visual_tokenizer.backbone.vision_model.encoder.layers.15.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
511
+ "visual_tokenizer.backbone.vision_model.encoder.layers.15.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
512
+ "visual_tokenizer.backbone.vision_model.encoder.layers.15.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
513
+ "visual_tokenizer.backbone.vision_model.encoder.layers.15.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
514
+ "visual_tokenizer.backbone.vision_model.encoder.layers.15.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
515
+ "visual_tokenizer.backbone.vision_model.encoder.layers.15.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
516
+ "visual_tokenizer.backbone.vision_model.encoder.layers.15.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
517
+ "visual_tokenizer.backbone.vision_model.encoder.layers.15.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
518
+ "visual_tokenizer.backbone.vision_model.encoder.layers.15.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
519
+ "visual_tokenizer.backbone.vision_model.encoder.layers.15.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
520
+ "visual_tokenizer.backbone.vision_model.encoder.layers.15.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
521
+ "visual_tokenizer.backbone.vision_model.encoder.layers.15.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
522
+ "visual_tokenizer.backbone.vision_model.encoder.layers.15.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
523
+ "visual_tokenizer.backbone.vision_model.encoder.layers.15.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
524
+ "visual_tokenizer.backbone.vision_model.encoder.layers.16.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
525
+ "visual_tokenizer.backbone.vision_model.encoder.layers.16.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
526
+ "visual_tokenizer.backbone.vision_model.encoder.layers.16.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
527
+ "visual_tokenizer.backbone.vision_model.encoder.layers.16.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
528
+ "visual_tokenizer.backbone.vision_model.encoder.layers.16.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
529
+ "visual_tokenizer.backbone.vision_model.encoder.layers.16.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
530
+ "visual_tokenizer.backbone.vision_model.encoder.layers.16.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
531
+ "visual_tokenizer.backbone.vision_model.encoder.layers.16.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
532
+ "visual_tokenizer.backbone.vision_model.encoder.layers.16.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
533
+ "visual_tokenizer.backbone.vision_model.encoder.layers.16.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
534
+ "visual_tokenizer.backbone.vision_model.encoder.layers.16.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
535
+ "visual_tokenizer.backbone.vision_model.encoder.layers.16.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
536
+ "visual_tokenizer.backbone.vision_model.encoder.layers.16.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
537
+ "visual_tokenizer.backbone.vision_model.encoder.layers.16.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
538
+ "visual_tokenizer.backbone.vision_model.encoder.layers.16.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
539
+ "visual_tokenizer.backbone.vision_model.encoder.layers.16.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
540
+ "visual_tokenizer.backbone.vision_model.encoder.layers.17.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
541
+ "visual_tokenizer.backbone.vision_model.encoder.layers.17.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
542
+ "visual_tokenizer.backbone.vision_model.encoder.layers.17.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
543
+ "visual_tokenizer.backbone.vision_model.encoder.layers.17.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
544
+ "visual_tokenizer.backbone.vision_model.encoder.layers.17.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
545
+ "visual_tokenizer.backbone.vision_model.encoder.layers.17.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
546
+ "visual_tokenizer.backbone.vision_model.encoder.layers.17.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
547
+ "visual_tokenizer.backbone.vision_model.encoder.layers.17.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
548
+ "visual_tokenizer.backbone.vision_model.encoder.layers.17.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
549
+ "visual_tokenizer.backbone.vision_model.encoder.layers.17.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
550
+ "visual_tokenizer.backbone.vision_model.encoder.layers.17.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
551
+ "visual_tokenizer.backbone.vision_model.encoder.layers.17.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
552
+ "visual_tokenizer.backbone.vision_model.encoder.layers.17.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
553
+ "visual_tokenizer.backbone.vision_model.encoder.layers.17.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
554
+ "visual_tokenizer.backbone.vision_model.encoder.layers.17.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
555
+ "visual_tokenizer.backbone.vision_model.encoder.layers.17.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
556
+ "visual_tokenizer.backbone.vision_model.encoder.layers.18.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
557
+ "visual_tokenizer.backbone.vision_model.encoder.layers.18.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
558
+ "visual_tokenizer.backbone.vision_model.encoder.layers.18.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
559
+ "visual_tokenizer.backbone.vision_model.encoder.layers.18.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
560
+ "visual_tokenizer.backbone.vision_model.encoder.layers.18.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
561
+ "visual_tokenizer.backbone.vision_model.encoder.layers.18.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
562
+ "visual_tokenizer.backbone.vision_model.encoder.layers.18.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
563
+ "visual_tokenizer.backbone.vision_model.encoder.layers.18.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
564
+ "visual_tokenizer.backbone.vision_model.encoder.layers.18.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
565
+ "visual_tokenizer.backbone.vision_model.encoder.layers.18.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
566
+ "visual_tokenizer.backbone.vision_model.encoder.layers.18.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
567
+ "visual_tokenizer.backbone.vision_model.encoder.layers.18.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
568
+ "visual_tokenizer.backbone.vision_model.encoder.layers.18.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
569
+ "visual_tokenizer.backbone.vision_model.encoder.layers.18.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
570
+ "visual_tokenizer.backbone.vision_model.encoder.layers.18.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
571
+ "visual_tokenizer.backbone.vision_model.encoder.layers.18.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
572
+ "visual_tokenizer.backbone.vision_model.encoder.layers.19.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
573
+ "visual_tokenizer.backbone.vision_model.encoder.layers.19.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
574
+ "visual_tokenizer.backbone.vision_model.encoder.layers.19.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
575
+ "visual_tokenizer.backbone.vision_model.encoder.layers.19.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
576
+ "visual_tokenizer.backbone.vision_model.encoder.layers.19.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
577
+ "visual_tokenizer.backbone.vision_model.encoder.layers.19.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
578
+ "visual_tokenizer.backbone.vision_model.encoder.layers.19.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
579
+ "visual_tokenizer.backbone.vision_model.encoder.layers.19.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
580
+ "visual_tokenizer.backbone.vision_model.encoder.layers.19.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
581
+ "visual_tokenizer.backbone.vision_model.encoder.layers.19.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
582
+ "visual_tokenizer.backbone.vision_model.encoder.layers.19.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
583
+ "visual_tokenizer.backbone.vision_model.encoder.layers.19.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
584
+ "visual_tokenizer.backbone.vision_model.encoder.layers.19.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
585
+ "visual_tokenizer.backbone.vision_model.encoder.layers.19.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
586
+ "visual_tokenizer.backbone.vision_model.encoder.layers.19.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
587
+ "visual_tokenizer.backbone.vision_model.encoder.layers.19.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
588
+ "visual_tokenizer.backbone.vision_model.encoder.layers.2.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
589
+ "visual_tokenizer.backbone.vision_model.encoder.layers.2.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
590
+ "visual_tokenizer.backbone.vision_model.encoder.layers.2.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
591
+ "visual_tokenizer.backbone.vision_model.encoder.layers.2.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
592
+ "visual_tokenizer.backbone.vision_model.encoder.layers.2.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
593
+ "visual_tokenizer.backbone.vision_model.encoder.layers.2.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
594
+ "visual_tokenizer.backbone.vision_model.encoder.layers.2.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
595
+ "visual_tokenizer.backbone.vision_model.encoder.layers.2.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
596
+ "visual_tokenizer.backbone.vision_model.encoder.layers.2.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
597
+ "visual_tokenizer.backbone.vision_model.encoder.layers.2.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
598
+ "visual_tokenizer.backbone.vision_model.encoder.layers.2.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
599
+ "visual_tokenizer.backbone.vision_model.encoder.layers.2.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
600
+ "visual_tokenizer.backbone.vision_model.encoder.layers.2.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
601
+ "visual_tokenizer.backbone.vision_model.encoder.layers.2.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
602
+ "visual_tokenizer.backbone.vision_model.encoder.layers.2.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
603
+ "visual_tokenizer.backbone.vision_model.encoder.layers.2.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
604
+ "visual_tokenizer.backbone.vision_model.encoder.layers.20.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
605
+ "visual_tokenizer.backbone.vision_model.encoder.layers.20.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
606
+ "visual_tokenizer.backbone.vision_model.encoder.layers.20.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
607
+ "visual_tokenizer.backbone.vision_model.encoder.layers.20.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
608
+ "visual_tokenizer.backbone.vision_model.encoder.layers.20.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
609
+ "visual_tokenizer.backbone.vision_model.encoder.layers.20.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
610
+ "visual_tokenizer.backbone.vision_model.encoder.layers.20.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
611
+ "visual_tokenizer.backbone.vision_model.encoder.layers.20.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
612
+ "visual_tokenizer.backbone.vision_model.encoder.layers.20.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
613
+ "visual_tokenizer.backbone.vision_model.encoder.layers.20.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
614
+ "visual_tokenizer.backbone.vision_model.encoder.layers.20.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
615
+ "visual_tokenizer.backbone.vision_model.encoder.layers.20.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
616
+ "visual_tokenizer.backbone.vision_model.encoder.layers.20.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
617
+ "visual_tokenizer.backbone.vision_model.encoder.layers.20.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
618
+ "visual_tokenizer.backbone.vision_model.encoder.layers.20.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
619
+ "visual_tokenizer.backbone.vision_model.encoder.layers.20.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
620
+ "visual_tokenizer.backbone.vision_model.encoder.layers.21.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
621
+ "visual_tokenizer.backbone.vision_model.encoder.layers.21.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
622
+ "visual_tokenizer.backbone.vision_model.encoder.layers.21.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
623
+ "visual_tokenizer.backbone.vision_model.encoder.layers.21.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
624
+ "visual_tokenizer.backbone.vision_model.encoder.layers.21.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
625
+ "visual_tokenizer.backbone.vision_model.encoder.layers.21.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
626
+ "visual_tokenizer.backbone.vision_model.encoder.layers.21.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
627
+ "visual_tokenizer.backbone.vision_model.encoder.layers.21.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
628
+ "visual_tokenizer.backbone.vision_model.encoder.layers.21.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
629
+ "visual_tokenizer.backbone.vision_model.encoder.layers.21.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
630
+ "visual_tokenizer.backbone.vision_model.encoder.layers.21.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
631
+ "visual_tokenizer.backbone.vision_model.encoder.layers.21.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
632
+ "visual_tokenizer.backbone.vision_model.encoder.layers.21.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
633
+ "visual_tokenizer.backbone.vision_model.encoder.layers.21.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
634
+ "visual_tokenizer.backbone.vision_model.encoder.layers.21.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
635
+ "visual_tokenizer.backbone.vision_model.encoder.layers.21.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
636
+ "visual_tokenizer.backbone.vision_model.encoder.layers.22.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
637
+ "visual_tokenizer.backbone.vision_model.encoder.layers.22.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
638
+ "visual_tokenizer.backbone.vision_model.encoder.layers.22.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
639
+ "visual_tokenizer.backbone.vision_model.encoder.layers.22.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
640
+ "visual_tokenizer.backbone.vision_model.encoder.layers.22.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
641
+ "visual_tokenizer.backbone.vision_model.encoder.layers.22.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
642
+ "visual_tokenizer.backbone.vision_model.encoder.layers.22.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
643
+ "visual_tokenizer.backbone.vision_model.encoder.layers.22.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
644
+ "visual_tokenizer.backbone.vision_model.encoder.layers.22.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
645
+ "visual_tokenizer.backbone.vision_model.encoder.layers.22.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
646
+ "visual_tokenizer.backbone.vision_model.encoder.layers.22.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
647
+ "visual_tokenizer.backbone.vision_model.encoder.layers.22.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
648
+ "visual_tokenizer.backbone.vision_model.encoder.layers.22.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
649
+ "visual_tokenizer.backbone.vision_model.encoder.layers.22.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
650
+ "visual_tokenizer.backbone.vision_model.encoder.layers.22.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
651
+ "visual_tokenizer.backbone.vision_model.encoder.layers.22.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
652
+ "visual_tokenizer.backbone.vision_model.encoder.layers.23.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
653
+ "visual_tokenizer.backbone.vision_model.encoder.layers.23.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
654
+ "visual_tokenizer.backbone.vision_model.encoder.layers.23.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
655
+ "visual_tokenizer.backbone.vision_model.encoder.layers.23.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
656
+ "visual_tokenizer.backbone.vision_model.encoder.layers.23.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
657
+ "visual_tokenizer.backbone.vision_model.encoder.layers.23.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
658
+ "visual_tokenizer.backbone.vision_model.encoder.layers.23.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
659
+ "visual_tokenizer.backbone.vision_model.encoder.layers.23.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
660
+ "visual_tokenizer.backbone.vision_model.encoder.layers.23.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
661
+ "visual_tokenizer.backbone.vision_model.encoder.layers.23.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
662
+ "visual_tokenizer.backbone.vision_model.encoder.layers.23.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
663
+ "visual_tokenizer.backbone.vision_model.encoder.layers.23.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
664
+ "visual_tokenizer.backbone.vision_model.encoder.layers.23.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
665
+ "visual_tokenizer.backbone.vision_model.encoder.layers.23.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
666
+ "visual_tokenizer.backbone.vision_model.encoder.layers.23.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
667
+ "visual_tokenizer.backbone.vision_model.encoder.layers.23.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
668
+ "visual_tokenizer.backbone.vision_model.encoder.layers.3.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
669
+ "visual_tokenizer.backbone.vision_model.encoder.layers.3.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
670
+ "visual_tokenizer.backbone.vision_model.encoder.layers.3.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
671
+ "visual_tokenizer.backbone.vision_model.encoder.layers.3.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
672
+ "visual_tokenizer.backbone.vision_model.encoder.layers.3.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
673
+ "visual_tokenizer.backbone.vision_model.encoder.layers.3.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
674
+ "visual_tokenizer.backbone.vision_model.encoder.layers.3.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
675
+ "visual_tokenizer.backbone.vision_model.encoder.layers.3.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
676
+ "visual_tokenizer.backbone.vision_model.encoder.layers.3.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
677
+ "visual_tokenizer.backbone.vision_model.encoder.layers.3.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
678
+ "visual_tokenizer.backbone.vision_model.encoder.layers.3.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
679
+ "visual_tokenizer.backbone.vision_model.encoder.layers.3.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
680
+ "visual_tokenizer.backbone.vision_model.encoder.layers.3.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
681
+ "visual_tokenizer.backbone.vision_model.encoder.layers.3.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
682
+ "visual_tokenizer.backbone.vision_model.encoder.layers.3.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
683
+ "visual_tokenizer.backbone.vision_model.encoder.layers.3.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
684
+ "visual_tokenizer.backbone.vision_model.encoder.layers.4.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
685
+ "visual_tokenizer.backbone.vision_model.encoder.layers.4.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
686
+ "visual_tokenizer.backbone.vision_model.encoder.layers.4.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
687
+ "visual_tokenizer.backbone.vision_model.encoder.layers.4.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
688
+ "visual_tokenizer.backbone.vision_model.encoder.layers.4.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
689
+ "visual_tokenizer.backbone.vision_model.encoder.layers.4.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
690
+ "visual_tokenizer.backbone.vision_model.encoder.layers.4.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
691
+ "visual_tokenizer.backbone.vision_model.encoder.layers.4.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
692
+ "visual_tokenizer.backbone.vision_model.encoder.layers.4.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
693
+ "visual_tokenizer.backbone.vision_model.encoder.layers.4.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
694
+ "visual_tokenizer.backbone.vision_model.encoder.layers.4.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
695
+ "visual_tokenizer.backbone.vision_model.encoder.layers.4.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
696
+ "visual_tokenizer.backbone.vision_model.encoder.layers.4.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
697
+ "visual_tokenizer.backbone.vision_model.encoder.layers.4.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
698
+ "visual_tokenizer.backbone.vision_model.encoder.layers.4.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
699
+ "visual_tokenizer.backbone.vision_model.encoder.layers.4.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
700
+ "visual_tokenizer.backbone.vision_model.encoder.layers.5.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
701
+ "visual_tokenizer.backbone.vision_model.encoder.layers.5.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
702
+ "visual_tokenizer.backbone.vision_model.encoder.layers.5.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
703
+ "visual_tokenizer.backbone.vision_model.encoder.layers.5.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
704
+ "visual_tokenizer.backbone.vision_model.encoder.layers.5.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
705
+ "visual_tokenizer.backbone.vision_model.encoder.layers.5.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
706
+ "visual_tokenizer.backbone.vision_model.encoder.layers.5.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
707
+ "visual_tokenizer.backbone.vision_model.encoder.layers.5.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
708
+ "visual_tokenizer.backbone.vision_model.encoder.layers.5.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
709
+ "visual_tokenizer.backbone.vision_model.encoder.layers.5.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
710
+ "visual_tokenizer.backbone.vision_model.encoder.layers.5.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
711
+ "visual_tokenizer.backbone.vision_model.encoder.layers.5.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
712
+ "visual_tokenizer.backbone.vision_model.encoder.layers.5.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
713
+ "visual_tokenizer.backbone.vision_model.encoder.layers.5.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
714
+ "visual_tokenizer.backbone.vision_model.encoder.layers.5.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
715
+ "visual_tokenizer.backbone.vision_model.encoder.layers.5.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
716
+ "visual_tokenizer.backbone.vision_model.encoder.layers.6.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
717
+ "visual_tokenizer.backbone.vision_model.encoder.layers.6.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
718
+ "visual_tokenizer.backbone.vision_model.encoder.layers.6.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
719
+ "visual_tokenizer.backbone.vision_model.encoder.layers.6.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
720
+ "visual_tokenizer.backbone.vision_model.encoder.layers.6.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
721
+ "visual_tokenizer.backbone.vision_model.encoder.layers.6.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
722
+ "visual_tokenizer.backbone.vision_model.encoder.layers.6.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
723
+ "visual_tokenizer.backbone.vision_model.encoder.layers.6.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
724
+ "visual_tokenizer.backbone.vision_model.encoder.layers.6.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
725
+ "visual_tokenizer.backbone.vision_model.encoder.layers.6.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
726
+ "visual_tokenizer.backbone.vision_model.encoder.layers.6.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
727
+ "visual_tokenizer.backbone.vision_model.encoder.layers.6.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
728
+ "visual_tokenizer.backbone.vision_model.encoder.layers.6.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
729
+ "visual_tokenizer.backbone.vision_model.encoder.layers.6.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
730
+ "visual_tokenizer.backbone.vision_model.encoder.layers.6.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
731
+ "visual_tokenizer.backbone.vision_model.encoder.layers.6.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
732
+ "visual_tokenizer.backbone.vision_model.encoder.layers.7.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
733
+ "visual_tokenizer.backbone.vision_model.encoder.layers.7.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
734
+ "visual_tokenizer.backbone.vision_model.encoder.layers.7.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
735
+ "visual_tokenizer.backbone.vision_model.encoder.layers.7.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
736
+ "visual_tokenizer.backbone.vision_model.encoder.layers.7.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
737
+ "visual_tokenizer.backbone.vision_model.encoder.layers.7.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
738
+ "visual_tokenizer.backbone.vision_model.encoder.layers.7.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
739
+ "visual_tokenizer.backbone.vision_model.encoder.layers.7.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
740
+ "visual_tokenizer.backbone.vision_model.encoder.layers.7.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
741
+ "visual_tokenizer.backbone.vision_model.encoder.layers.7.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
742
+ "visual_tokenizer.backbone.vision_model.encoder.layers.7.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
743
+ "visual_tokenizer.backbone.vision_model.encoder.layers.7.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
744
+ "visual_tokenizer.backbone.vision_model.encoder.layers.7.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
745
+ "visual_tokenizer.backbone.vision_model.encoder.layers.7.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
746
+ "visual_tokenizer.backbone.vision_model.encoder.layers.7.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
747
+ "visual_tokenizer.backbone.vision_model.encoder.layers.7.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
748
+ "visual_tokenizer.backbone.vision_model.encoder.layers.8.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
749
+ "visual_tokenizer.backbone.vision_model.encoder.layers.8.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
750
+ "visual_tokenizer.backbone.vision_model.encoder.layers.8.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
751
+ "visual_tokenizer.backbone.vision_model.encoder.layers.8.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
752
+ "visual_tokenizer.backbone.vision_model.encoder.layers.8.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
753
+ "visual_tokenizer.backbone.vision_model.encoder.layers.8.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
754
+ "visual_tokenizer.backbone.vision_model.encoder.layers.8.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
755
+ "visual_tokenizer.backbone.vision_model.encoder.layers.8.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
756
+ "visual_tokenizer.backbone.vision_model.encoder.layers.8.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
757
+ "visual_tokenizer.backbone.vision_model.encoder.layers.8.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
758
+ "visual_tokenizer.backbone.vision_model.encoder.layers.8.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
759
+ "visual_tokenizer.backbone.vision_model.encoder.layers.8.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
760
+ "visual_tokenizer.backbone.vision_model.encoder.layers.8.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
761
+ "visual_tokenizer.backbone.vision_model.encoder.layers.8.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
762
+ "visual_tokenizer.backbone.vision_model.encoder.layers.8.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
763
+ "visual_tokenizer.backbone.vision_model.encoder.layers.8.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
764
+ "visual_tokenizer.backbone.vision_model.encoder.layers.9.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
765
+ "visual_tokenizer.backbone.vision_model.encoder.layers.9.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
766
+ "visual_tokenizer.backbone.vision_model.encoder.layers.9.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
767
+ "visual_tokenizer.backbone.vision_model.encoder.layers.9.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
768
+ "visual_tokenizer.backbone.vision_model.encoder.layers.9.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
769
+ "visual_tokenizer.backbone.vision_model.encoder.layers.9.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
770
+ "visual_tokenizer.backbone.vision_model.encoder.layers.9.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
771
+ "visual_tokenizer.backbone.vision_model.encoder.layers.9.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
772
+ "visual_tokenizer.backbone.vision_model.encoder.layers.9.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
773
+ "visual_tokenizer.backbone.vision_model.encoder.layers.9.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
774
+ "visual_tokenizer.backbone.vision_model.encoder.layers.9.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
775
+ "visual_tokenizer.backbone.vision_model.encoder.layers.9.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
776
+ "visual_tokenizer.backbone.vision_model.encoder.layers.9.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
777
+ "visual_tokenizer.backbone.vision_model.encoder.layers.9.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
778
+ "visual_tokenizer.backbone.vision_model.encoder.layers.9.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
779
+ "visual_tokenizer.backbone.vision_model.encoder.layers.9.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
780
+ "visual_tokenizer.backbone.vision_model.post_layernorm.bias": "pytorch_model-00004-of-00004.bin",
781
+ "visual_tokenizer.backbone.vision_model.post_layernorm.weight": "pytorch_model-00004-of-00004.bin",
782
+ "visual_tokenizer.backbone.vision_model.pre_layrnorm.bias": "pytorch_model-00004-of-00004.bin",
783
+ "visual_tokenizer.backbone.vision_model.pre_layrnorm.weight": "pytorch_model-00004-of-00004.bin",
784
+ "visual_tokenizer.head.0.weight": "pytorch_model-00004-of-00004.bin",
785
+ "visual_tokenizer.head.1.bias": "pytorch_model-00004-of-00004.bin",
786
+ "visual_tokenizer.head.1.weight": "pytorch_model-00004-of-00004.bin",
787
+ "vte.weight": "pytorch_model-00004-of-00004.bin"
788
+ }
789
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|im_end|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|im_end|>",
37
+ "errors": "replace",
38
+ "model_max_length": 32768,
39
+ "pad_token": "<|endoftext|>",
40
+ "split_special_tokens": false,
41
+ "tokenizer_class": "Qwen2Tokenizer",
42
+ "unk_token": null
43
+ }
utils.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from importlib import import_module
3
+
4
+ # Model Constants
5
+ IGNORE_INDEX = -100
6
+ IMAGE_TOKEN_INDEX = -200
7
+ IMAGE_TOKEN = "<image>"
8
+
9
+ # Log & Print
10
+ BEGIN_LINE = '========================************========================'
11
+ END_LINE = '------------------------------------------------------------'
12
+
13
+
14
+ def rank0_print(*args):
15
+ if int(os.getenv("LOCAL_PROCESS_RANK", os.getenv("LOCAL_RANK", 0))) == 0:
16
+ print(*args)
17
+
18
+
19
+ def smart_unit(num):
20
+ if num / 1.0e9 >= 1:
21
+ return f'{num / 1.0e9:.2f}B'
22
+ else:
23
+ return f'{num / 1.0e6:.2f}M'
24
+
25
+
26
+ def import_class_from_string(full_class_string):
27
+ # Split the path to get separate module and class names
28
+ module_path, _, class_name = full_class_string.rpartition('.')
29
+
30
+ # Import the module using the module path
31
+ module = import_module(module_path)
32
+
33
+ # Get the class from the imported module
34
+ cls = getattr(module, class_name)
35
+ return cls
visual_tokenizer.py ADDED
@@ -0,0 +1,254 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import datetime
2
+ from typing import Dict, Union, Optional
3
+
4
+ import deepspeed
5
+ import torch
6
+ import PIL.Image
7
+ from torch.nn.functional import softmax, gumbel_softmax
8
+ from torch import Tensor
9
+ from transformers import PretrainedConfig, PreTrainedModel, AutoImageProcessor, AutoConfig, AutoModel
10
+ from transformers import CLIPVisionModel, CLIPImageProcessor
11
+ from transformers.integrations import is_deepspeed_zero3_enabled
12
+
13
+ from .utils import BEGIN_LINE, END_LINE, rank0_print
14
+
15
+ MODEL_TYPE = "clip_visual_tokenizer"
16
+
17
+
18
+ class BaseVisualTokenizerConfig(PretrainedConfig):
19
+ def __init__(self,
20
+ vocab_size=16384,
21
+ tokenize_function="softmax",
22
+ tau=1.0,
23
+ depths=None,
24
+ use_indicators=False,
25
+ drop_cls_token=False,
26
+ backbone_config: Optional[Union[PretrainedConfig, dict]] = None,
27
+ hidden_stride: int = 1,
28
+ **kwargs):
29
+ super().__init__(**kwargs)
30
+ self.vocab_size = vocab_size
31
+ self.tokenize_function = tokenize_function
32
+ self.tau = tau
33
+ if isinstance(depths, str):
34
+ depths = [int(x) for x in depths.split('|')]
35
+ self.depths = depths
36
+ self.backbone_kwargs = {}
37
+ self.use_indicators = use_indicators
38
+ self.drop_cls_token = drop_cls_token
39
+ if backbone_config is not None:
40
+ assert isinstance(backbone_config, (PretrainedConfig, dict)), \
41
+ f"expect `backbone_config` to be instance of PretrainedConfig or dict, but got {type(backbone_config)} type"
42
+ if not isinstance(backbone_config, PretrainedConfig):
43
+ model_type = backbone_config['model_type']
44
+ backbone_config.pop('model_type')
45
+ backbone_config = AutoConfig.for_model(model_type, **backbone_config)
46
+ self.backbone_config = backbone_config
47
+ self.hidden_stride = hidden_stride
48
+
49
+
50
+ class BaseVisualTokenizer(PreTrainedModel):
51
+ base_model_prefix = "backbone"
52
+ main_input_name = None
53
+ _image_processor_class = None
54
+ _image_processor_kwargs = {}
55
+ _backbone_class = None
56
+ _backbone_name_or_path = None
57
+
58
+ def __init__(self, config: BaseVisualTokenizerConfig, *inputs, **kwargs):
59
+ super().__init__(config, *inputs, **kwargs)
60
+ if kwargs.get('train_from_scratch'):
61
+ self.image_processor = self._image_processor_class.from_pretrained(self._backbone_name_or_path,
62
+ **self._image_processor_kwargs)
63
+ self.backbone = self._backbone_class.from_pretrained(self._backbone_name_or_path,
64
+ **self.config.backbone_kwargs)
65
+ self.config.backbone_config = self.backbone.config
66
+ else:
67
+ self.image_processor = AutoImageProcessor.from_pretrained(kwargs['image_processor_name_or_path'])
68
+ self.backbone = AutoModel.from_config(self.config.backbone_config)
69
+ self.head = None
70
+
71
+ assert all((self.image_processor.do_resize,
72
+ not getattr(self.image_processor, 'do_center_crop', False),
73
+ self.image_processor.do_rescale,
74
+ self.image_processor.do_normalize
75
+ )), f"image_processor `{self.image_processor}` is not supported currently"
76
+
77
+ def get_backbone(self):
78
+ return self.backbone
79
+
80
+ def get_monitor_tensors(self):
81
+ raise NotImplementedError
82
+
83
+ def get_image_processor(self):
84
+ return self.image_processor
85
+
86
+ def get_head(self):
87
+ return self.head
88
+
89
+ def get_image_size(self):
90
+ raise NotImplementedError
91
+
92
+ def preprocess_image(self, image: PIL.Image.Image, convert_to_rgb=True):
93
+ if convert_to_rgb and image.mode != 'RGB':
94
+ image = image.convert('RGB')
95
+
96
+ # first resize and preprocess
97
+ sides = self.get_image_size()
98
+ if sides[0] != sides[1]:
99
+ raise ValueError('get_image_size() returns non-square size')
100
+ side = sides[0]
101
+
102
+ width, height = image.size
103
+ if width == height:
104
+ new_width = new_height = side
105
+ elif width > height:
106
+ new_width = side
107
+ new_height = int(height / width * new_width)
108
+ else:
109
+ new_height = side
110
+ new_width = int(width / height * new_height)
111
+ new_size = dict(height=new_height, width=new_width)
112
+ pixel_values = self.image_processor.preprocess(image, size=new_size, return_tensors='pt')['pixel_values']
113
+
114
+ # then pad to square
115
+ square_values = torch.zeros([1, 3, side, side], dtype=pixel_values.dtype, device=pixel_values.device)
116
+ new_height, new_width = pixel_values.shape[2:]
117
+ if new_height == new_width:
118
+ square_values[:, :, :, :] = pixel_values
119
+ elif new_height > new_width:
120
+ from_index = (side - new_width) // 2
121
+ square_values[:, :, :, from_index:from_index + new_width] = pixel_values
122
+ else:
123
+ from_index = (side - new_height) // 2
124
+ square_values[:, :, from_index:from_index + new_height, :] = pixel_values
125
+
126
+ return square_values
127
+
128
+ def get_layer_norm(self):
129
+ return self.layer_norm
130
+
131
+ def tokenize(self, logits):
132
+ def st_argmax(y_soft, dim): # straight-through softmax
133
+ index = y_soft.max(dim, keepdim=True)[1]
134
+ y_hard = torch.zeros_like(y_soft, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0)
135
+ ret = y_hard - y_soft.detach() + y_soft
136
+ return ret
137
+
138
+ if self.config.tokenize_function == 'softmax':
139
+ tokens = softmax(logits, dim=-1)
140
+ elif self.config.tokenize_function == 'gumbel_argmax':
141
+ tokens = gumbel_softmax(logits, tau=self.config.tau, hard=True)
142
+ elif self.config.tokenize_function == 'st_argmax':
143
+ tokens = st_argmax(logits, dim=-1)
144
+ else:
145
+ raise ValueError(
146
+ f'Invalid `max_type`, expected softmax or gumbel_argmax or st_argmax, but got {self.config.tokenize_function}')
147
+ return tokens
148
+
149
+
150
+
151
+ class ClipVisualTokenizerConfig(BaseVisualTokenizerConfig):
152
+ model_type = MODEL_TYPE
153
+
154
+ def __init__(self, **kwargs):
155
+ super().__init__(**kwargs)
156
+ if self.depths:
157
+ assert len(self.depths) == 1
158
+ self.backbone_kwargs['num_hidden_layers'] = self.depths[0]
159
+
160
+
161
+ class ClipVisualTokenizer(BaseVisualTokenizer):
162
+ config_class = ClipVisualTokenizerConfig
163
+ supports_gradient_checkpointing = True
164
+ _no_split_modules = ["CLIPEncoderLayer"]
165
+ _image_processor_class = CLIPImageProcessor
166
+ _image_processor_kwargs = dict(do_center_crop=False)
167
+ _backbone_class = CLIPVisionModel
168
+ _backbone_name_or_path = "openai/clip-vit-large-patch14-336"
169
+
170
+ def __init__(self, config: ClipVisualTokenizerConfig = None, *inputs, **kwargs):
171
+ super().__init__(config, *inputs, **kwargs)
172
+ head_dim = self.config.vocab_size
173
+ if self.config.use_indicators:
174
+ head_dim -= 2 # reserved for two image indicator tokens
175
+ self.head = torch.nn.Sequential(
176
+ torch.nn.Linear(self.backbone.config.hidden_size, head_dim, bias=False),
177
+ torch.nn.LayerNorm(head_dim)
178
+ )
179
+
180
+ def re_init_layers(self, re_init_layer_begin):
181
+ layer_dict = self.get_re_init_layer_dict(re_init_layer_begin)
182
+ for name, layer in layer_dict.items():
183
+ rank0_print(BEGIN_LINE)
184
+ rank0_print(f'[{datetime.now()}] Before layer re-initialization of {name}: ')
185
+ for k, v in layer.named_parameters():
186
+ with deepspeed.zero.GatheredParameters([v]):
187
+ rank0_print(f'{k}: {v}')
188
+ with deepspeed.zero.GatheredParameters(list(layer.parameters(recurse=True)), modifier_rank=0):
189
+ if not is_deepspeed_zero3_enabled() or deepspeed.comm.get_rank() == 0:
190
+ layer.apply(self.backbone._init_weights)
191
+ rank0_print(f'[{datetime.now()}] After layer re-initialization of {name}:')
192
+ for k, v in layer.named_parameters():
193
+ with deepspeed.zero.GatheredParameters([v]):
194
+ rank0_print(f'{k}: {v}')
195
+ rank0_print(END_LINE)
196
+
197
+ def get_re_init_layer_dict(self, re_init_layer_begin: int) -> Dict[str, torch.nn.Module]:
198
+ assert re_init_layer_begin >= 0, "negative index is prohibited"
199
+ layer_dict = dict()
200
+ for i in range(re_init_layer_begin, self.backbone.config.num_hidden_layers):
201
+ layer_dict[f'backbone.vision_model.encoder.layers.{i}'] = self.backbone.vision_model.encoder.layers[i]
202
+ return layer_dict
203
+
204
+ def get_monitor_tensors(self):
205
+ return dict(
206
+ backbone_bottom=self.backbone.vision_model.encoder.layers[0].self_attn.k_proj.weight,
207
+ backbone_top=self.backbone.vision_model.encoder.layers[-1].self_attn.out_proj.weight,
208
+ head=self.head[0].weight
209
+ )
210
+
211
+ def get_image_size(self):
212
+ height = self.image_processor.crop_size["height"]
213
+ width = self.image_processor.crop_size["width"]
214
+ return height, width
215
+
216
+ def forward(self, pixel_values) -> Tensor: # [BatchSize, ImageShape] -> [BatchSize, #Token, VocabSize]
217
+ output = self.backbone(
218
+ pixel_values, output_hidden_states=True, return_dict=True)
219
+ features = output.last_hidden_state
220
+ if self.config.drop_cls_token:
221
+ features = features[:, 1:, :]
222
+ logits = self.head(features)
223
+ tokens = self.tokenize(logits)
224
+ if self.config.use_indicators:
225
+ # tokens' shape is [BatchSize, #Token, VocabSize-2], so padding with [BatchSize, #Token, 2], after
226
+ # which, tokens' shape should become [BatchSize, #Token, VocabSize]
227
+ batch_size, token_len, _ = tokens.shape
228
+ padding_tensor = torch.zeros(size=(batch_size, token_len, 2),
229
+ dtype=tokens.dtype,
230
+ device=tokens.device,
231
+ layout=tokens.layout,
232
+ requires_grad=False)
233
+ tokens = torch.cat((tokens, padding_tensor), dim=2)
234
+
235
+ # adding indicator tokens, after which tokens' shape should become [BatchSize, 1+#Token+1, VocabSize]
236
+ begin_indicator = torch.zeros(size=(batch_size, 1),
237
+ dtype=torch.long,
238
+ device=tokens.device,
239
+ requires_grad=False) + self.config.vocab_size - 2
240
+ begin_indicator_token = torch.nn.functional.one_hot(begin_indicator,
241
+ num_classes=self.config.vocab_size).to(
242
+ dtype=tokens.dtype)
243
+ end_indicator = torch.zeros(size=(batch_size, 1),
244
+ dtype=torch.long,
245
+ device=tokens.device,
246
+ requires_grad=False) + self.config.vocab_size - 1
247
+ end_indicator_token = torch.nn.functional.one_hot(end_indicator,
248
+ num_classes=self.config.vocab_size).to(dtype=tokens.dtype)
249
+ tokens = torch.cat((begin_indicator_token, tokens, end_indicator_token), dim=1)
250
+ return tokens
251
+
252
+
253
+ AutoConfig.register(MODEL_TYPE, ClipVisualTokenizerConfig)
254
+ AutoModel.register(ClipVisualTokenizerConfig, ClipVisualTokenizer)
vocab.json ADDED
The diff for this file is too large to render. See raw diff