File size: 2,818 Bytes
efc3bce dde5b8d efc3bce dde5b8d efc3bce dde5b8d efc3bce dde5b8d efc3bce dde5b8d efc3bce dde5b8d efc3bce dde5b8d efc3bce dde5b8d efc3bce dde5b8d efc3bce dde5b8d efc3bce dde5b8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
tags:
- dna
- human_genome
---
# GENA-LM (gena-lm-bert-large-t2t)
GENA-LM is a Family of Open-Source Foundational Models for Long DNA Sequences.
GENA-LM models are transformer masked language models trained on human DNA sequence.
Differences between GENA-LM (`gena-lm-bert-large-t2t`) and DNABERT:
- BPE tokenization instead of k-mers;
- input sequence size is about 4500 nucleotides (512 BPE tokens) compared to 512 nucleotides of DNABERT
- pre-training on T2T vs. GRCh38.p13 human genome assembly.
Source code and data: https://github.com/AIRI-Institute/GENA_LM
Paper: https://www.biorxiv.org/content/10.1101/2023.06.12.544594v1
## Examples
### Load pre-trained model
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained('AIRI-Institute/gena-lm-bert-large-t2t')
model = AutoModel.from_pretrained('AIRI-Institute/gena-lm-bert-large-t2t')
```
### How to load the model to fine-tune it on classification task
```python
from src.gena_lm.modeling_bert import BertForSequenceClassification
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('AIRI-Institute/gena-lm-bert-large-t2t')
model = BertForSequenceClassification.from_pretrained('AIRI-Institute/gena-lm-bert-large-t2t')
```
## Model description
GENA-LM (`gena-lm-bert-large-t2t`) model is trained in a masked language model (MLM) fashion, following the methods proposed in the BigBird paper by masking 15% of tokens. Model config for `gena-lm-bert-large-t2t` is similar to the `bert-large-uncased`:
- 512 Maximum sequence length
- 24 Layers, 16 Attention heads
- 1024 Hidden size
- 32k Vocabulary size
We pre-trained `gena-lm-bert-large-t2t` using the latest T2T human genome assembly (https://www.ncbi.nlm.nih.gov/assembly/GCA_009914755.3/). The data was augmented by sampling mutations from 1000-genome SNPs (gnomAD dataset). Pre-training was performed for 1,750,000 iterations with batch size 256 and sequence length was equal to 512 tokens. We modified Transformer with [Pre-Layer normalization](https://arxiv.org/abs/2002.04745).
## Evaluation
For evaluation results, see our paper: https://www.biorxiv.org/content/10.1101/2023.06.12.544594v1
## Citation
```bibtex
@article{GENA_LM,
author = {Veniamin Fishman and Yuri Kuratov and Maxim Petrov and Aleksei Shmelev and Denis Shepelin and Nikolay Chekanov and Olga Kardymon and Mikhail Burtsev},
title = {GENA-LM: A Family of Open-Source Foundational Models for Long DNA Sequences},
elocation-id = {2023.06.12.544594},
year = {2023},
doi = {10.1101/2023.06.12.544594},
publisher = {Cold Spring Harbor Laboratory},
URL = {https://www.biorxiv.org/content/early/2023/06/13/2023.06.12.544594},
eprint = {https://www.biorxiv.org/content/early/2023/06/13/2023.06.12.544594.full.pdf},
journal = {bioRxiv}
}
``` |