File size: 1,753 Bytes
78074bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
base_model: facebook/roberta-hate-speech-dynabench-r4-target
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: experiment-model-roberta
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# experiment-model-roberta

This model is a fine-tuned version of [facebook/roberta-hate-speech-dynabench-r4-target](https://huggingface.co/facebook/roberta-hate-speech-dynabench-r4-target) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6733
- Accuracy: 0.8538

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3299        | 1.0   | 884  | 0.3470          | 0.8453   |
| 0.3061        | 2.0   | 1768 | 0.3472          | 0.8546   |
| 0.2706        | 3.0   | 2652 | 0.3926          | 0.8583   |
| 0.1706        | 4.0   | 3536 | 0.5401          | 0.8495   |
| 0.1454        | 5.0   | 4420 | 0.6733          | 0.8538   |


### Framework versions

- Transformers 4.38.1
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2