--- license: apache-2.0 --- # Emotion2Vec-S For more information, please refer to github [C2SER](https://github.com/zxzhao0/C2SER) ## Introduction This repository contains the implementation of Emotion2Vec-S, a self-supervised learning (SSL) model for speech emotion recognition, as presented in our paper "Steering Language Model to Stable Speech Emotion Recognition via Contextual Perception and Chain of Thought". ## Requirements and Installation This project follows the fairseq installation process. ### Requirements - PyTorch version >= 1.10.0 - Python version >= 3.8 ### Installation To install fairseq and develop locally: ```bash git clone https://github.com/pytorch/fairseq cd fairseq pip install --editable ./ ``` ### Feature Extraction You can download the pre-trained [Emotion2vec-S model](https://drive.google.com/drive/folders/1LWWi6bahzn7fJP4fCgPleOyQ30sD_BWO?usp=drive_link) and put it in the `./Emotion2Vec-S/ckpt` folder. Meanwhile,we have provided the pretrained checkpoints in the huggingface model hub. You can also download ckpt file from [here](https://huggingface.co/ASLP-lab/Emotion2Vec-S). We also provide [here](https://drive.google.com/drive/folders/12AOVJT7I9GSLJnjHa-Elc-UKgog-mZR2) the feature files for the Emo-Emilia dataset extracted using Emotion2vec-S. If you want to extract features using Emotion2Vec-S,you will also need to provide a `wav.scp` file and place it in the `./Emotion2Vec-S` directory. Here is an example of the `wav.scp` file:: ```pgsql audio_name1 /path/to/audio_name1.wav audio_name2 /path/to/audio_name2.wav audio_name3 /path/to/audio_name3.wav ``` Next, you can directly run the following code to extract features: ```python import torch import os import sys import json import numpy as np import argparse from tqdm import tqdm import torchaudio import torch.nn.functional as F import fairseq from dataclasses import dataclass SAMPLING_RATE=16000 @dataclass class UserDirModule: user_dir: str def extract_fairseq_feature(wav_path, model, device): try: wav, sr = torchaudio.load(wav_path) # 合并多声道为单声道(取平均) if wav.size(0) > 1: wav = torch.mean(wav, dim=0, keepdim=True) if sr != SAMPLING_RATE: wav = torchaudio.functional.resample(wav, sr, SAMPLING_RATE) wav = wav[0, :].view(1, -1) wav = wav.to(device) out = model.extract_features(wav) return out except Exception as e: print(f"Error processing audio file {wav_path}: {e}") return None if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--model_path', type=str, default="./Emotion2Vec-S/ckpt/checkpoint.pt") parser.add_argument('--model_dir', type=str, default="./Emotion2Vec-S/examples/data2vec/") parser.add_argument('--dump_dir', type=str, default="./Emotion2Vec-S/features_frm") parser.add_argument('--device', type=str, default='cuda') parser.add_argument('--data', type=str, default="./Emotion2Vec-S/wav.scp") parser.add_argument('--level', type=str, default="frame", help="frame or utterance") args = parser.parse_args() data = {} with open(args.data, 'r') as f: for line in f: seg_id, wav_path = line.strip().split(maxsplit=1) data[seg_id] = wav_path os.makedirs(args.dump_dir, exist_ok=True) seg_ids = data.keys() print(f'Loaded {len(seg_ids)} audio entries') # load models my_model_path = UserDirModule(args.model_dir) fairseq.utils.import_user_module(my_model_path) model, cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task([args.model_path]) model = model[0].to(args.device) for seg_id in tqdm(seg_ids): wav_path = data[seg_id] if not os.path.exists(wav_path): print(f"WARNING: {wav_path} does not exist") continue try: torchaudio.load(wav_path) except: print(f'ERROR: Failed to load {wav_path}') continue feat = extract_fairseq_feature(wav_path, model, args.device) if feat is not None: if args.level == 'frame': feat = feat['x'].cpu().detach().numpy()[0] elif args.level == 'utterance': feat = feat['utt_x'].cpu().detach().numpy()[0] else: raise ValueError("Unknown level: {}".format(args.level)) save_path = os.path.join(args.dump_dir, f"{seg_id}.npy") os.makedirs(os.path.dirname(save_path), exist_ok=True) np.save(save_path, feat) print(f"Processed: {seg_id} | Shape: {feat.shape} | Saved to: {save_path}") else: print(f"Skipped problematic file: {seg_id}") ``` Alternatively, you can adjust the code according to your needs. The code path is `./Emotion2Vec-S/speech_feature_extraction.py`. You can also use the `./Emotion2Vec-S/extract_feature.sh` script to batch process features for multiple datasets. The script supports parallel processing and offers the following parameters: - `--model_path`: Path to the checkpoint file - `--model_dir`: Path to the model - `--dump_dir`: Directory to save extracted features - `--device`: Device to run the model on (e.g., 'cuda:0') - `--data`: Path to the dataset scp file - `--level`: Level of feature (frame level or utterance level) ## 2. Training and testing on EmoBox using extracted features If you want to test our model on other datasets using [EmoBox](https://github.com/emo-box/EmoBox/tree/main). There is also an example provided below, which you can modify to suit your needs: Use k-fold cross-validation with learning rates (1e-3, 1e-4) and hidden sizes (128, 256): ```bash cd examples/sb data=/path/to/your/data_files lrs=(1e-3 1e-4) # Learning rate list hidden_sizes=(128 256) # Hidden size list gpus=(0 1 2 3) # GPU list task_id=0 declare -A dataset_folds=( ["mesd"]=1 ) declare -A dataset_classes=( ["mesd"]=6 ) datasets=("mesd") for dataset in "${datasets[@]}"; do folds=${dataset_folds[$dataset]} n_classes=${dataset_classes[$dataset]} for lr in "${lrs[@]}"; do for hidden_size in "${hidden_sizes[@]}"; do gpu=${gpus[$task_id % ${#gpus[@]}]} export CUDA_VISIBLE_DEVICES=$gpu task_number=$((task_id + 1)) for fold in $(seq 1 $folds); do echo "Training fold $fold with lr=$lr, hidden_size=$hidden_size on GPU $gpu, task_number=$task_number, dataset=$dataset..." python3 train.py \ hparams/data2vec2-large_freeze.yaml \ --output_folder /path/to/your/${dataset}-S/fold${fold}_lr${lr}_hidden${hidden_size} \ --seed 1234 \ --batch_size 32 \ --lr $lr \ --train_annotation ${data}/${dataset}/fold_${fold}/${dataset}_train_fold_${fold}.json \ --test_annotation ${data}/${dataset}/fold_${fold}/${dataset}_test_fold_${fold}.json \ --number_of_epochs 100 \ --feat_dir /path/to/your/dump_${dataset}-S \ --label_map ${data}/${dataset}/label_map.json \ --device cuda \ --out_n_neurons ${n_classes} \ --hidden_size $hidden_size & done task_id=$((task_id + 1)) done done done wait echo "All training tasks completed." ```