Commit
·
ea0c22d
1
Parent(s):
02320a7
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,31 @@
|
|
1 |
---
|
2 |
license: afl-3.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: afl-3.0
|
3 |
---
|
4 |
+
|
5 |
+
# Question generation using T5 transformer
|
6 |
+
|
7 |
+
Import the pretrained model as well as tokenizer:
|
8 |
+
```
|
9 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
10 |
+
|
11 |
+
model = T5ForConditionalGeneration.from_pretrained('AbhilashDatta/T5_Qgen-squad-marco')
|
12 |
+
tokenizer = T5Tokenizer.from_pretrained('AbhilashDatta/T5_Qgen-squad-marco')
|
13 |
+
```
|
14 |
+
|
15 |
+
Then use the tokenizer to encode/decode and model to generate:
|
16 |
+
```
|
17 |
+
input = "answer: Abhilash context: My name is Abhilash Datta."
|
18 |
+
batch = tokenizer(input, padding='longest', max_length=512, return_tensors='pt')
|
19 |
+
inputs_batch = batch['input_ids'][0]
|
20 |
+
inputs_batch = torch.unsqueeze(inputs_batch, 0)
|
21 |
+
|
22 |
+
ques_id = model.generate(inputs_batch, max_length=100, early_stopping=True)
|
23 |
+
ques_batch = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in ques_id]
|
24 |
+
|
25 |
+
print(ques_batch)
|
26 |
+
```
|
27 |
+
|
28 |
+
Output:
|
29 |
+
```
|
30 |
+
['what is my name']
|
31 |
+
```
|