Abhiram4 commited on
Commit
7fafb4a
·
verified ·
1 Parent(s): f113456

Model save

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-base-patch16-224-in21k
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - image_folder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: PlantDiseaseDetectorV2
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: image_folder
18
+ type: image_folder
19
+ config: default
20
+ split: train
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.998719590268886
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # PlantDiseaseDetectorV2
32
+
33
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the image_folder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.0610
36
+ - Accuracy: 0.9987
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 64
57
+ - eval_batch_size: 64
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 4
60
+ - total_train_batch_size: 256
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 7
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 0.9051 | 1.0 | 219 | 0.8025 | 0.9861 |
71
+ | 0.2801 | 2.0 | 439 | 0.2606 | 0.9959 |
72
+ | 0.1455 | 3.0 | 659 | 0.1402 | 0.9973 |
73
+ | 0.0949 | 4.0 | 879 | 0.0942 | 0.9986 |
74
+ | 0.0741 | 5.0 | 1098 | 0.0749 | 0.9984 |
75
+ | 0.0623 | 6.0 | 1318 | 0.0642 | 0.9984 |
76
+ | 0.0586 | 6.98 | 1533 | 0.0610 | 0.9987 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.33.0
82
+ - Pytorch 2.0.0
83
+ - Datasets 2.1.0
84
+ - Tokenizers 0.13.3