--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.972 --- # vit-base-patch16-224-finetuned-eurosat This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1017 - Accuracy: 0.972 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 450 - eval_batch_size: 450 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 1800 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3243 | 1.0 | 46 | 0.2033 | 0.944 | | 0.1247 | 2.0 | 92 | 0.0791 | 0.976 | | 0.0937 | 3.0 | 138 | 0.0971 | 0.963 | | 0.0716 | 4.0 | 184 | 0.0778 | 0.972 | | 0.0543 | 5.0 | 230 | 0.0654 | 0.98 | | 0.0367 | 6.0 | 276 | 0.0913 | 0.972 | | 0.0292 | 7.0 | 322 | 0.0778 | 0.979 | | 0.0204 | 8.0 | 368 | 0.0914 | 0.971 | | 0.0161 | 9.0 | 414 | 0.1026 | 0.971 | | 0.0154 | 10.0 | 460 | 0.1017 | 0.972 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1