--- license: mit tags: - generated_from_trainer model-index: - name: finetuned-Sentiment-classfication-ROBERTA-model results: [] --- # finetuned-Sentiment-classfication-ROBERTA-model This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5618 - Rmse: 0.6118 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.7273 | 2.0 | 500 | 0.5618 | 0.6118 | | 0.4294 | 4.0 | 1000 | 0.5821 | 0.5906 | | 0.2278 | 6.0 | 1500 | 0.8019 | 0.6235 | | 0.1246 | 8.0 | 2000 | 0.9412 | 0.5961 | | 0.083 | 10.0 | 2500 | 1.1040 | 0.5978 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3