File size: 2,888 Bytes
3ad8bae 10f6c30 3ad8bae 10f6c30 3ad8bae 10f6c30 3ad8bae 10f6c30 3ad8bae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.86
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-gtzan
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8005
- Accuracy: 0.86
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 2000
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| 2.0825 | 0.88 | 100 | 0.47 | 1.8392 |
| 1.4043 | 1.77 | 200 | 0.67 | 1.2675 |
| 1.0686 | 2.65 | 300 | 0.71 | 1.0186 |
| 0.8037 | 3.54 | 400 | 0.74 | 0.9198 |
| 0.6215 | 4.42 | 500 | 0.78 | 0.7636 |
| 0.5106 | 5.31 | 600 | 0.76 | 0.7937 |
| 0.3844 | 6.19 | 700 | 0.78 | 0.6909 |
| 0.3043 | 7.08 | 800 | 0.77 | 0.7279 |
| 0.2453 | 7.96 | 900 | 0.82 | 0.6447 |
| 0.211 | 8.85 | 1000 | 0.84 | 0.6404 |
| 0.2268 | 9.73 | 1100 | 0.7198 | 0.77 |
| 0.1565 | 10.62 | 1200 | 0.6704 | 0.83 |
| 0.0694 | 11.5 | 1300 | 0.8017 | 0.83 |
| 0.0568 | 12.39 | 1400 | 0.7841 | 0.8 |
| 0.0441 | 13.27 | 1500 | 0.7757 | 0.81 |
| 0.0302 | 14.16 | 1600 | 0.7819 | 0.84 |
| 0.0116 | 15.04 | 1700 | 0.7949 | 0.83 |
| 0.0289 | 15.93 | 1800 | 0.8057 | 0.85 |
| 0.0115 | 16.81 | 1900 | 0.8271 | 0.83 |
| 0.0081 | 17.7 | 2000 | 0.8005 | 0.86 |
### Framework versions
- Transformers 4.32.0
- Pytorch 1.12.1+cu113
- Datasets 2.14.4
- Tokenizers 0.13.3
|