End of training
Browse files- README.md +24 -14
- pytorch_model.bin +1 -1
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -59,7 +59,7 @@ The following hyperparameters were used during training:
|
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_ratio: 0.1
|
62 |
-
- training_steps:
|
63 |
|
64 |
### Training results
|
65 |
|
@@ -75,16 +75,26 @@ The following hyperparameters were used during training:
|
|
75 |
| 0.3043 | 7.08 | 800 | 0.77 | 0.7279 |
|
76 |
| 0.2453 | 7.96 | 900 | 0.82 | 0.6447 |
|
77 |
| 0.211 | 8.85 | 1000 | 0.84 | 0.6404 |
|
78 |
-
| 0.2268 | 9.73 | 1100 | 0.
|
79 |
-
| 0.1565 | 10.62 | 1200 | 0.
|
80 |
-
| 0.0694 | 11.5 | 1300 | 0.
|
81 |
-
| 0.0568 | 12.39 | 1400 | 0.
|
82 |
-
| 0.0441 | 13.27 | 1500 | 0.
|
83 |
-
| 0.0302 | 14.16 | 1600 | 0.
|
84 |
-
| 0.0116 | 15.04 | 1700 | 0.
|
85 |
-
| 0.0289 | 15.93 | 1800 | 0.
|
86 |
-
| 0.0115 | 16.81 | 1900 | 0.
|
87 |
-
| 0.0081 | 17.7 | 2000 | 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
|
90 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.84
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.9097
|
36 |
+
- Accuracy: 0.84
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_ratio: 0.1
|
62 |
+
- training_steps: 3000
|
63 |
|
64 |
### Training results
|
65 |
|
|
|
75 |
| 0.3043 | 7.08 | 800 | 0.77 | 0.7279 |
|
76 |
| 0.2453 | 7.96 | 900 | 0.82 | 0.6447 |
|
77 |
| 0.211 | 8.85 | 1000 | 0.84 | 0.6404 |
|
78 |
+
| 0.2268 | 9.73 | 1100 | 0.77 | 0.7198 |
|
79 |
+
| 0.1565 | 10.62 | 1200 | 0.83 | 0.6704 |
|
80 |
+
| 0.0694 | 11.5 | 1300 | 0.83 | 0.8017 |
|
81 |
+
| 0.0568 | 12.39 | 1400 | 0.8 | 0.7841 |
|
82 |
+
| 0.0441 | 13.27 | 1500 | 0.81 | 0.7757 |
|
83 |
+
| 0.0302 | 14.16 | 1600 | 0.84 | 0.7819 |
|
84 |
+
| 0.0116 | 15.04 | 1700 | 0.83 | 0.7949 |
|
85 |
+
| 0.0289 | 15.93 | 1800 | 0.85 | 0.8057 |
|
86 |
+
| 0.0115 | 16.81 | 1900 | 0.83 | 0.8271 |
|
87 |
+
| 0.0081 | 17.7 | 2000 | 0.86 | 0.8005 |
|
88 |
+
| 0.0124 | 18.58 | 2100 | 0.8927 | 0.8 |
|
89 |
+
| 0.0219 | 19.47 | 2200 | 0.8126 | 0.85 |
|
90 |
+
| 0.0161 | 20.35 | 2300 | 0.8464 | 0.85 |
|
91 |
+
| 0.0157 | 21.24 | 2400 | 0.8459 | 0.86 |
|
92 |
+
| 0.0039 | 22.12 | 2500 | 1.0282 | 0.8 |
|
93 |
+
| 0.0157 | 23.01 | 2600 | 0.8649 | 0.86 |
|
94 |
+
| 0.0119 | 23.89 | 2700 | 0.8894 | 0.85 |
|
95 |
+
| 0.0129 | 24.78 | 2800 | 0.8624 | 0.87 |
|
96 |
+
| 0.0124 | 25.66 | 2900 | 0.8862 | 0.85 |
|
97 |
+
| 0.0025 | 26.55 | 3000 | 0.9097 | 0.84 |
|
98 |
|
99 |
|
100 |
### Framework versions
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 94782534
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ffe6aa149d2250d28f5c513c2b303c1053ce95f219a9cee4d784b7d7d50e250
|
3 |
size 94782534
|