--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.83 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.9791 - Accuracy: 0.83 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 2.0825 | 0.88 | 100 | 0.47 | 1.8392 | | 1.4043 | 1.77 | 200 | 0.67 | 1.2675 | | 1.0686 | 2.65 | 300 | 0.71 | 1.0186 | | 0.8037 | 3.54 | 400 | 0.74 | 0.9198 | | 0.6215 | 4.42 | 500 | 0.78 | 0.7636 | | 0.5106 | 5.31 | 600 | 0.76 | 0.7937 | | 0.3844 | 6.19 | 700 | 0.78 | 0.6909 | | 0.3043 | 7.08 | 800 | 0.77 | 0.7279 | | 0.2453 | 7.96 | 900 | 0.82 | 0.6447 | | 0.211 | 8.85 | 1000 | 0.84 | 0.6404 | | 0.2268 | 9.73 | 1100 | 0.77 | 0.7198 | | 0.1565 | 10.62 | 1200 | 0.83 | 0.6704 | | 0.0694 | 11.5 | 1300 | 0.83 | 0.8017 | | 0.0568 | 12.39 | 1400 | 0.8 | 0.7841 | | 0.0441 | 13.27 | 1500 | 0.81 | 0.7757 | | 0.0302 | 14.16 | 1600 | 0.84 | 0.7819 | | 0.0116 | 15.04 | 1700 | 0.83 | 0.7949 | | 0.0289 | 15.93 | 1800 | 0.85 | 0.8057 | | 0.0115 | 16.81 | 1900 | 0.83 | 0.8271 | | 0.0081 | 17.7 | 2000 | 0.86 | 0.8005 | | 0.0124 | 18.58 | 2100 | 0.8 | 0.8927 | | 0.0219 | 19.47 | 2200 | 0.85 | 0.8126 | | 0.0161 | 20.35 | 2300 | 0.85 | 0.8464 | | 0.0157 | 21.24 | 2400 | 0.86 | 0.8459 | | 0.0039 | 22.12 | 2500 | 0.8 | 1.0282 | | 0.0157 | 23.01 | 2600 | 0.86 | 0.8649 | | 0.0119 | 23.89 | 2700 | 0.85 | 0.8894 | | 0.0129 | 24.78 | 2800 | 0.87 | 0.8624 | | 0.0124 | 25.66 | 2900 | 0.85 | 0.8862 | | 0.0025 | 26.55 | 3000 | 0.84 | 0.9097 | | 0.0197 | 27.43 | 3100 | 0.9150 | 0.85 | | 0.0193 | 28.32 | 3200 | 0.9986 | 0.83 | | 0.0119 | 29.2 | 3300 | 0.9001 | 0.87 | | 0.0017 | 30.09 | 3400 | 0.9599 | 0.83 | | 0.015 | 30.97 | 3500 | 0.9442 | 0.84 | | 0.0015 | 31.86 | 3600 | 0.9813 | 0.83 | | 0.0056 | 32.74 | 3700 | 0.9791 | 0.83 | ### Framework versions - Transformers 4.32.0 - Pytorch 1.12.1+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3