End of training
Browse files- README.md +87 -198
- all_results.json +8 -0
- config.json +78 -0
- model.safetensors +3 -0
- train_results.json +8 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,201 +1,90 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
###
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
|
201 |
-
|
|
|
1 |
---
|
2 |
+
license: other
|
3 |
+
base_model: nvidia/mit-b1
|
4 |
+
tags:
|
5 |
+
- vision
|
6 |
+
- image-segmentation
|
7 |
+
- generated_from_trainer
|
8 |
+
model-index:
|
9 |
+
- name: segformer-b1-finetuned-segments-graffiti
|
10 |
+
results: []
|
11 |
---
|
12 |
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# segformer-b1-finetuned-segments-graffiti
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [nvidia/mit-b1](https://huggingface.co/nvidia/mit-b1) on the Adriatogi/graffiti dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.2171
|
21 |
+
- Mean Iou: 0.8381
|
22 |
+
- Mean Accuracy: 0.9102
|
23 |
+
- Overall Accuracy: 0.9168
|
24 |
+
- Accuracy Not Graf: 0.9379
|
25 |
+
- Accuracy Graf: 0.8826
|
26 |
+
- Iou Not Graf: 0.8748
|
27 |
+
- Iou Graf: 0.8015
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 0.0001
|
47 |
+
- train_batch_size: 2
|
48 |
+
- eval_batch_size: 2
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- lr_scheduler_warmup_ratio: 0.05
|
53 |
+
- num_epochs: 10
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Not Graf | Accuracy Graf | Iou Not Graf | Iou Graf |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-----------------:|:-------------:|:------------:|:--------:|
|
59 |
+
| 0.4076 | 0.42 | 20 | 0.5389 | 0.6053 | 0.7982 | 0.7541 | 0.6139 | 0.9825 | 0.6073 | 0.6033 |
|
60 |
+
| 0.3386 | 0.83 | 40 | 0.2883 | 0.7962 | 0.8984 | 0.8898 | 0.8625 | 0.9343 | 0.8290 | 0.7634 |
|
61 |
+
| 0.1964 | 1.25 | 60 | 0.2514 | 0.8061 | 0.9009 | 0.8964 | 0.8819 | 0.9200 | 0.8406 | 0.7716 |
|
62 |
+
| 0.1723 | 1.67 | 80 | 0.2259 | 0.8269 | 0.9058 | 0.9100 | 0.9235 | 0.8880 | 0.8641 | 0.7898 |
|
63 |
+
| 0.1981 | 2.08 | 100 | 0.2338 | 0.8119 | 0.9040 | 0.8999 | 0.8869 | 0.9210 | 0.8459 | 0.7778 |
|
64 |
+
| 0.2827 | 2.5 | 120 | 0.2106 | 0.8251 | 0.9080 | 0.9084 | 0.9095 | 0.9066 | 0.8601 | 0.7902 |
|
65 |
+
| 0.1864 | 2.92 | 140 | 0.2241 | 0.8232 | 0.8956 | 0.9097 | 0.9546 | 0.8365 | 0.8675 | 0.7790 |
|
66 |
+
| 0.1362 | 3.33 | 160 | 0.2185 | 0.8257 | 0.8978 | 0.9109 | 0.9525 | 0.8431 | 0.8688 | 0.7826 |
|
67 |
+
| 0.1264 | 3.75 | 180 | 0.2155 | 0.8237 | 0.9054 | 0.9079 | 0.9156 | 0.8952 | 0.8602 | 0.7871 |
|
68 |
+
| 0.1688 | 4.17 | 200 | 0.2241 | 0.8206 | 0.8985 | 0.9072 | 0.9346 | 0.8625 | 0.8618 | 0.7795 |
|
69 |
+
| 0.1198 | 4.58 | 220 | 0.2080 | 0.8331 | 0.9087 | 0.9137 | 0.9296 | 0.8877 | 0.8697 | 0.7965 |
|
70 |
+
| 0.111 | 5.0 | 240 | 0.2033 | 0.8369 | 0.9133 | 0.9154 | 0.9221 | 0.9044 | 0.8710 | 0.8027 |
|
71 |
+
| 0.2003 | 5.42 | 260 | 0.2214 | 0.8262 | 0.9118 | 0.9084 | 0.8976 | 0.9261 | 0.8586 | 0.7938 |
|
72 |
+
| 0.1369 | 5.83 | 280 | 0.2044 | 0.8396 | 0.9147 | 0.9170 | 0.9245 | 0.9048 | 0.8734 | 0.8058 |
|
73 |
+
| 0.1901 | 6.25 | 300 | 0.1968 | 0.8411 | 0.9119 | 0.9185 | 0.9393 | 0.8846 | 0.8771 | 0.8050 |
|
74 |
+
| 0.1887 | 6.67 | 320 | 0.2098 | 0.8367 | 0.9100 | 0.9159 | 0.9344 | 0.8857 | 0.8731 | 0.8002 |
|
75 |
+
| 0.0738 | 7.08 | 340 | 0.2205 | 0.8357 | 0.9127 | 0.9147 | 0.9211 | 0.9043 | 0.8699 | 0.8014 |
|
76 |
+
| 0.1166 | 7.5 | 360 | 0.2274 | 0.8317 | 0.9046 | 0.9135 | 0.9420 | 0.8672 | 0.8709 | 0.7924 |
|
77 |
+
| 0.1247 | 7.92 | 380 | 0.2225 | 0.8310 | 0.9051 | 0.9130 | 0.9381 | 0.8722 | 0.8698 | 0.7923 |
|
78 |
+
| 0.1212 | 8.33 | 400 | 0.2230 | 0.8345 | 0.9108 | 0.9143 | 0.9254 | 0.8961 | 0.8699 | 0.7991 |
|
79 |
+
| 0.0979 | 8.75 | 420 | 0.2226 | 0.8352 | 0.9076 | 0.9153 | 0.9400 | 0.8752 | 0.8730 | 0.7973 |
|
80 |
+
| 0.0984 | 9.17 | 440 | 0.2189 | 0.8354 | 0.9106 | 0.9149 | 0.9287 | 0.8925 | 0.8712 | 0.7997 |
|
81 |
+
| 0.1151 | 9.58 | 460 | 0.2185 | 0.8382 | 0.9098 | 0.9170 | 0.9396 | 0.8800 | 0.8751 | 0.8013 |
|
82 |
+
| 0.0989 | 10.0 | 480 | 0.2171 | 0.8381 | 0.9102 | 0.9168 | 0.9379 | 0.8826 | 0.8748 | 0.8015 |
|
83 |
+
|
84 |
+
|
85 |
+
### Framework versions
|
86 |
+
|
87 |
+
- Transformers 4.38.2
|
88 |
+
- Pytorch 2.2.1+cu121
|
89 |
+
- Datasets 2.18.0
|
90 |
+
- Tokenizers 0.15.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
all_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 10.0,
|
3 |
+
"total_flos": 6.195818721705984e+16,
|
4 |
+
"train_loss": 0.18686199750130375,
|
5 |
+
"train_runtime": 245.8946,
|
6 |
+
"train_samples_per_second": 3.904,
|
7 |
+
"train_steps_per_second": 1.952
|
8 |
+
}
|
config.json
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nvidia/mit-b1",
|
3 |
+
"architectures": [
|
4 |
+
"SegformerForSemanticSegmentation"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"classifier_dropout_prob": 0.1,
|
8 |
+
"decoder_hidden_size": 256,
|
9 |
+
"depths": [
|
10 |
+
2,
|
11 |
+
2,
|
12 |
+
2,
|
13 |
+
2
|
14 |
+
],
|
15 |
+
"downsampling_rates": [
|
16 |
+
1,
|
17 |
+
4,
|
18 |
+
8,
|
19 |
+
16
|
20 |
+
],
|
21 |
+
"drop_path_rate": 0.1,
|
22 |
+
"hidden_act": "gelu",
|
23 |
+
"hidden_dropout_prob": 0.0,
|
24 |
+
"hidden_sizes": [
|
25 |
+
64,
|
26 |
+
128,
|
27 |
+
320,
|
28 |
+
512
|
29 |
+
],
|
30 |
+
"id2label": {
|
31 |
+
"0": "not_graf",
|
32 |
+
"1": "graf"
|
33 |
+
},
|
34 |
+
"image_size": 224,
|
35 |
+
"initializer_range": 0.02,
|
36 |
+
"label2id": {
|
37 |
+
"graf": 1,
|
38 |
+
"not_graf": 0
|
39 |
+
},
|
40 |
+
"layer_norm_eps": 1e-06,
|
41 |
+
"mlp_ratios": [
|
42 |
+
4,
|
43 |
+
4,
|
44 |
+
4,
|
45 |
+
4
|
46 |
+
],
|
47 |
+
"model_type": "segformer",
|
48 |
+
"num_attention_heads": [
|
49 |
+
1,
|
50 |
+
2,
|
51 |
+
5,
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"num_channels": 3,
|
55 |
+
"num_encoder_blocks": 4,
|
56 |
+
"patch_sizes": [
|
57 |
+
7,
|
58 |
+
3,
|
59 |
+
3,
|
60 |
+
3
|
61 |
+
],
|
62 |
+
"reshape_last_stage": true,
|
63 |
+
"semantic_loss_ignore_index": 255,
|
64 |
+
"sr_ratios": [
|
65 |
+
8,
|
66 |
+
4,
|
67 |
+
2,
|
68 |
+
1
|
69 |
+
],
|
70 |
+
"strides": [
|
71 |
+
4,
|
72 |
+
2,
|
73 |
+
2,
|
74 |
+
2
|
75 |
+
],
|
76 |
+
"torch_dtype": "float32",
|
77 |
+
"transformers_version": "4.38.2"
|
78 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c027357a85bf08be8dd7666652b1ace57c11ddb7e73c2d1474304802913e9d0f
|
3 |
+
size 54737376
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 10.0,
|
3 |
+
"total_flos": 6.195818721705984e+16,
|
4 |
+
"train_loss": 0.18686199750130375,
|
5 |
+
"train_runtime": 245.8946,
|
6 |
+
"train_samples_per_second": 3.904,
|
7 |
+
"train_steps_per_second": 1.952
|
8 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f00d8a6bcf44f242d68dd67e5e6b66b010e4e5c780a3572fab6c3af618a0feb1
|
3 |
+
size 4984
|