--- library_name: transformers license: apache-2.0 base_model: google/mt5-small tags: - summarization - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: mt5-small-finetuned results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum config: samsum split: validation args: samsum metrics: - name: Rouge1 type: rouge value: 0.4303256962227823 --- # mt5-small-finetuned This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.7974 - Rouge1: 0.4303 - Rouge2: 0.2038 - Rougel: 0.3736 - Rougelsum: 0.3734 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:| | 2.1585 | 1.0 | 1842 | 1.9205 | 0.4074 | 0.1838 | 0.3517 | 0.3518 | | 2.1545 | 2.0 | 3684 | 1.8882 | 0.4120 | 0.1914 | 0.3592 | 0.3588 | | 2.0888 | 3.0 | 5526 | 1.8290 | 0.4196 | 0.1939 | 0.3603 | 0.3601 | | 2.0272 | 4.0 | 7368 | 1.8269 | 0.4215 | 0.1975 | 0.3637 | 0.3635 | | 1.9871 | 5.0 | 9210 | 1.8224 | 0.4231 | 0.1943 | 0.3634 | 0.3633 | | 1.9535 | 6.0 | 11052 | 1.8055 | 0.4285 | 0.2030 | 0.3715 | 0.3715 | | 1.9322 | 7.0 | 12894 | 1.7954 | 0.4270 | 0.2018 | 0.3698 | 0.3697 | | 1.9181 | 8.0 | 14736 | 1.7974 | 0.4303 | 0.2038 | 0.3736 | 0.3734 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0