|
NL: send a signal `signal.sigusr1` to the current process |
|
ref: os.kill(os.getpid(), signal.SIGUSR1) |
|
Output: time.send('signal.si/r1', signal.SIGKILL) |
|
bleu_metric: 17.694975149532556 |
|
---------- |
|
NL: decode a hex string '4a4b4c' to utf-8. |
|
ref: bytes.fromhex('4a4b4c').decode('utf-8') |
|
Output: binascii.unhexlify('4A4B4c', 16) |
|
bleu_metric: 10.851293189170718 |
|
---------- |
|
NL: check if all elements in list `mylist` are identical |
|
ref: all(x == myList[0] for x in myList) |
|
Output: all(isinstance(x, int) for x in mylist) |
|
bleu_metric: 19.340017482720636 |
|
---------- |
|
NL: format number of spaces between strings `python`, `:` and `very good` to be `20` |
|
ref: print('%*s : %*s' % (20, 'Python', 20, 'Very Good')) |
|
Output: """{:20}""".format(your_string, your_string) |
|
bleu_metric: 7.614627140286717 |
|
---------- |
|
NL: how to convert a string from cp-1251 to utf-8? |
|
ref: d.decode('cp1251').encode('utf8') |
|
Output: cp1251.decode('utf-8').encode('utf-8') |
|
bleu_metric: 46.298522813477696 |
|
---------- |
|
NL: get rid of none values in dictionary `kwargs` |
|
ref: res = {k: v for k, v in list(kwargs.items()) if v is not None} |
|
Output: ▁dict((kwargs.values()) for kwargs in▁list(kwargs.items() |
|
bleu_metric: 29.736677967239018 |
|
---------- |
|
NL: get rid of none values in dictionary `kwargs` |
|
ref: res = dict((k, v) for k, v in kwargs.items() if v is not None) |
|
Output: ▁dict((kwargs.values()) for kwargs in▁list(kwargs.items() |
|
bleu_metric: 25.752718543785992 |
|
---------- |
|
NL: capture final output of a chain of system commands `ps -ef | grep something | wc -l` |
|
ref: subprocess.check_output('ps -ef | grep something | wc -l', shell=True) |
|
Output: time.sleep(1) |
|
bleu_metric: 3.2586794879778176 |
|
---------- |
|
NL: concatenate a list of strings `['a', 'b', 'c']` |
|
ref: """""".join(['a', 'b', 'c']) |
|
Output: ['a', 'b', 'c'] |
|
bleu_metric: 45.715029516916914 |
|
---------- |
|
NL: find intersection data between series `s1` and series `s2` |
|
ref: pd.Series(list(set(s1).intersection(set(s2)))) |
|
Output: s1.intersection(s1, s2.intersection(s2)) |
|
bleu_metric: 24.554859518133163 |
|
---------- |
|
NL: sending http headers to `client` |
|
ref: client.send('HTTP/1.0 200 OK\r\n') |
|
Output: client.send('http://www.google.com') |
|
bleu_metric: 31.482474520658833 |
|
---------- |
|
NL: format a datetime string `when` to extract date only |
|
ref: then = datetime.datetime.strptime(when, '%Y-%m-%d').date() |
|
Output: ▁datetime.datetime.strptime('January 11, 2010', '%Y-%m-%d').date() |
|
bleu_metric: 68.50564735741162 |
|
---------- |
|
NL: split a multi-line string `inputstring` into separate strings |
|
ref: inputString.split('\n') |
|
Output: inputstring.split(',') |
|
bleu_metric: 42.06930013115334 |
|
---------- |
|
NL: split a multi-line string ` a \n b \r\n c ` by new line character `\n` |
|
ref: ' a \n b \r\n c '.split('\n') |
|
Output: a.rstrip().split('\n') |
|
bleu_metric: 38.90205926838098 |
|
---------- |
|
NL: concatenate elements of list `b` by a colon ":" |
|
ref: """:""".join(str(x) for x in b) |
|
Output: b = [(x + y) for x, y in zip(a, b)] |
|
bleu_metric: 15.821285888349262 |
|
---------- |
|
NL: get the first object from a queryset in django model `entry` |
|
ref: Entry.objects.filter()[:1].get() |
|
Output: ▁Entry.objects.filter(id=1).order_by('id')[0] |
|
bleu_metric: 30.123786461877337 |
|
---------- |
|
NL: calculate sum over all rows of 2d numpy array |
|
ref: a.sum(axis=1) |
|
Output: np.sum(a,▁axis=0) |
|
bleu_metric: 26.91109110344471 |
|
---------- |
|
NL: enable warnings using action 'always' |
|
ref: warnings.simplefilter('always') |
|
Output: ▁warnings.warn('always') |
|
bleu_metric: 57.06745777055999 |
|
---------- |
|
NL: concatenate items of list `l` with a space ' ' |
|
ref: print(' '.join(map(str, l))) |
|
Output: [' ','','',''.join(map(str, l)) for l in zip(l |
|
bleu_metric: 41.653935052504146 |
|
---------- |
|
NL: run script 'hello.py' with argument 'htmlfilename.htm' on terminal using python executable |
|
ref: subprocess.call(['python.exe', 'hello.py', 'htmlfilename.htm']) |
|
Output: subprocess.call(['hello.py', 'htmlfilename.htm']) |
|
bleu_metric: 69.67212594723009 |
|
---------- |
|
NL: how can i parse a time string containing milliseconds in it with python? |
|
ref: time.strptime('30/03/09 16:31:32.123', '%d/%m/%y %H:%M:%S.%f') |
|
Output: ▁datetime.datetime.strptime(s, '%Y-%m-%d %H:%M:%M:% |
|
bleu_metric: 23.516840244143285 |
|
---------- |
|
NL: convert a string `my_string` with dot and comma into a float number `my_float` |
|
ref: my_float = float(my_string.replace(',', '')) |
|
Output: ▁float(my_string.split(',')) |
|
bleu_metric: 45.67575584464341 |
|
---------- |
|
NL: convert a string `123,456.908` with dot and comma into a floating number |
|
ref: float('123,456.908'.replace(',', '')) |
|
Output: ▁struct.unpack('(?<=.)', '123,45s.908)[2:]) |
|
bleu_metric: 15.85266710543935 |
|
---------- |
|
NL: set pythonpath in python script. |
|
ref: sys.path.append('/path/to/whatever') |
|
Output: os.path.dirname(os.path.abspath(__file__)) |
|
bleu_metric: 18.295654224495205 |
|
---------- |
|
NL: split string 'words, words, words.' using a regex '(\\w+)' |
|
ref: re.split('(\\W+)', 'Words, words, words.') |
|
Output: re.split('(\\w+)', 'Words,▁words,▁words.') |
|
bleu_metric: 68.42666550297749 |
|
---------- |
|
NL: open a file `output.txt` in append mode |
|
ref: file = open('Output.txt', 'a') |
|
Output: output.txt(open('output.txt', 'r')) |
|
bleu_metric: 36.327039079325615 |
|
---------- |
|
NL: download a file "http://www.example.com/songs/mp3.mp3" over http and save to "mp3.mp3" |
|
ref: urllib.request.urlretrieve('http://www.example.com/songs/mp3.mp3', 'mp3.mp3') |
|
Output: ▁urllib.request.urlretrieve('http://www.example.com/songs/mp3.mp3', |
|
bleu_metric: 77.20315796580198 |
|
---------- |
|
NL: download a file `url` over http and save to `file_name` |
|
ref: u = urllib.request.urlopen(url) |
|
Output: ▁urllib.request.urlretrieve('http://www.example.com/',▁filename) |
|
bleu_metric: 16.081986819293686 |
|
---------- |
|
NL: download a file 'http://www.example.com/' over http |
|
ref: response = urllib.request.urlopen('http://www.example.com/') |
|
html = response.read() |
|
Output: ▁urllib.request.urlretrieve('http://www.example.com/') |
|
bleu_metric: 55.1505335495472 |
|
---------- |
|
NL: download a file `url` over http |
|
ref: r = requests.get(url) |
|
Output: ▁urllib.request.urlretrieve(url) |
|
bleu_metric: 33.18077402843942 |
|
---------- |
|
NL: download a file `url` over http and save to "10mb" |
|
ref: response = requests.get(url, stream=True) |
|
Output: ▁urllib.request.urlretrieve('http://www.google.com/') |
|
bleu_metric: 8.282282660969601 |
|
---------- |
|
NL: argparse add argument with flag '--version' and version action of '%(prog)s 2.0' to parser `parser` |
|
ref: parser.add_argument('--version', action='version', version='%(prog)s 2.0') |
|
Output: parser.add_argument('---version', parser='%(prog)s▁2.0') |
|
bleu_metric: 63.536186277548154 |
|
---------- |
|
NL: remove key 'c' from dictionary `d` |
|
ref: {i: d[i] for i in d if i != 'c'} |
|
Output: d =▁dict((k, v) for k, v in d.items()▁if k▁!= 'c') |
|
bleu_metric: 17.787737198601235 |
|
---------- |
|
NL: create new dataframe object by merging columns "key" of dataframes `split_df` and `csv_df` and rename the columns from dataframes `split_df` and `csv_df` with suffix `_left` and `_right` respectively |
|
ref: pd.merge(split_df, csv_df, on=['key'], suffixes=('_left', '_right')) |
|
Output: df = pd.DataFrame(['key','split_df', 'csv_df' |
|
bleu_metric: 18.454987996483485 |
|
---------- |
|
NL: split a string `s` by space with `4` splits |
|
ref: s.split(' ', 4) |
|
Output: s.split(4) |
|
bleu_metric: 45.043204423208614 |
|
---------- |
|
NL: read keyboard-input |
|
ref: input('Enter your input:') |
|
Output: input() |
|
bleu_metric: 13.267398701010466 |
|
---------- |
|
NL: enable debug mode on flask application `app` |
|
ref: app.run(debug=True) |
|
Output: ▁app.run(debug=True) |
|
bleu_metric: 80.70557274927982 |
|
---------- |
|
NL: python save list `mylist` to file object 'save.txt' |
|
ref: pickle.dump(mylist, open('save.txt', 'wb')) |
|
Output: mylist.save('save.txt') |
|
bleu_metric: 27.374248660963534 |
|
---------- |
|
NL: multiply a matrix `p` with a 3d tensor `t` in scipy |
|
ref: scipy.tensordot(P, T, axes=[1, 1]).swapaxes(0, 1) |
|
Output: np.dot(tf, tf, tf) |
|
bleu_metric: 5.6829100730876085 |
|
---------- |
|
NL: create 3d array of zeroes of size `(3,3,3)` |
|
ref: numpy.zeros((3, 3, 3)) |
|
Output: np.zeros((3, 3, 3)) |
|
bleu_metric: 91.93227152249185 |
|
---------- |
|
NL: cut off the last word of a sentence `content` |
|
ref: """ """.join(content.split(' ')[:-1]) |
|
Output: re.split('\\.\\s', text) |
|
bleu_metric: 15.903644176951381 |
|
---------- |
|
NL: convert scalar `x` to array |
|
ref: x = np.asarray(x).reshape(1, -1)[(0), :] |
|
Output: x = np.array([(x) for x in range(10)]) |
|
bleu_metric: 22.64081604016773 |
|
---------- |
|
NL: sum all elements of nested list `l` |
|
ref: sum(sum(i) if isinstance(i, list) else i for i in L) |
|
Output: ▁sum(i for i, j in enumerate(l)▁if j == j) |
|
bleu_metric: 18.931747781986427 |
|
---------- |
|
NL: convert hex string '470fc614' to a float number |
|
ref: struct.unpack('!f', '470FC614'.decode('hex'))[0] |
|
Output: ▁struct.unpack('470fc614', 16)[0] |
|
bleu_metric: 32.22245000438681 |
|
---------- |
|
NL: multiple each value by `2` for all keys in a dictionary `my_dict` |
|
ref: my_dict.update((x, y * 2) for x, y in list(my_dict.items())) |
|
Output: ▁dict((k, v) for k, v in my_dict.items()▁if v == 2) |
|
bleu_metric: 24.351580099223153 |
|
---------- |
|
NL: running bash script 'sleep.sh' |
|
ref: subprocess.call('sleep.sh', shell=True) |
|
Output: os.system('sleep.sh') |
|
bleu_metric: 40.728895472895154 |
|
---------- |
|
NL: join elements of list `l` with a comma `,` |
|
ref: """,""".join(l) |
|
Output: [(x + y) for x, y in zip(l, l[1:])] |
|
bleu_metric: 8.24055698798382 |
|
---------- |
|
NL: make a comma-separated string from a list `mylist` |
|
ref: myList = ','.join(map(str, myList)) |
|
Output: mylist =▁map(int, mylist.split(',')) |
|
bleu_metric: 22.401343373458893 |
|
---------- |
|
NL: reverse the list that contains 1 to 10 |
|
ref: list(reversed(list(range(10)))) |
|
Output: ▁list(reversed([1, 10])) |
|
bleu_metric: 33.88714363186177 |
|
---------- |
|
NL: remove substring 'bag,' from a string 'lamp, bag, mirror' |
|
ref: print('lamp, bag, mirror'.replace('bag,', '')) |
|
Output: re.sub('(?<=[a-z])([A-Z])', '\\1', ' |
|
bleu_metric: 10.926857823700987 |
|
---------- |
|
NL: reverse the order of words, delimited by `.`, in string `s` |
|
ref: """.""".join(s.split('.')[::-1]) |
|
Output: s.split(',')[::-1] |
|
bleu_metric: 34.047433481921914 |
|
---------- |
|
NL: convert epoch time represented as milliseconds `s` to string using format '%y-%m-%d %h:%m:%s.%f' |
|
ref: datetime.datetime.fromtimestamp(s).strftime('%Y-%m-%d %H:%M:%S.%f') |
|
Output: time.strftime('%Y-%m-%d %H:%M:%S.%f') |
|
bleu_metric: 74.24520947691984 |
|
---------- |
|
NL: parse milliseconds epoch time '1236472051807' to format '%y-%m-%d %h:%m:%s' |
|
ref: time.strftime('%Y-%m-%d %H:%M:%S', time.gmtime(1236472051807 / 1000.0)) |
|
Output: ▁datetime.datetime.strptime('1236472051807', '%Y-%m-%d %H: |
|
bleu_metric: 36.283299841087896 |
|
---------- |
|
NL: get the date 7 days before the current date |
|
ref: (datetime.datetime.now() - datetime.timedelta(days=7)).date() |
|
Output: ▁datetime.datetime.now().date() |
|
bleu_metric: 39.17901378181805 |
|
---------- |
|
NL: sum elements at index `column` of each list in list `data` |
|
ref: print(sum(row[column] for row in data)) |
|
Output: [sum(x) for x in data] |
|
bleu_metric: 15.924924144387933 |
|
---------- |
|
NL: sum columns of a list `array` |
|
ref: [sum(row[i] for row in array) for i in range(len(array[0]))] |
|
Output: ▁sum(df.sum(axis=1)) |
|
bleu_metric: 6.052326593839414 |
|
---------- |
|
NL: encode binary string 'your string' to base64 code |
|
ref: base64.b64encode(bytes('your string', 'utf-8')) |
|
Output: base64.b64encode('your▁string') |
|
bleu_metric: 24.554248848222283 |
|
---------- |
|
NL: combine list of dictionaries `dicts` with the same keys in each list to a single dictionary |
|
ref: dict((k, [d[k] for d in dicts]) for k in dicts[0]) |
|
Output: ▁dict((k, v) for d in▁dicts for k, v in▁list(d.items())) |
|
bleu_metric: 24.10600823901789 |
|
---------- |
|
NL: merge a nested dictionary `dicts` into a flat dictionary by concatenating nested values with the same key `k` |
|
ref: {k: [d[k] for d in dicts] for k in dicts[0]} |
|
Output: ▁dict((k, v) for k, v in▁list(dicts.items())) |
|
bleu_metric: 8.17178415827399 |
|
---------- |
|
NL: how do i get the url parameter in a flask view |
|
ref: request.args['myParam'] |
|
Output: ▁app.run(debug=True) |
|
bleu_metric: 12.605968092174912 |
|
---------- |
|
NL: identify duplicate values in list `mylist` |
|
ref: [k for k, v in list(Counter(mylist).items()) if v > 1] |
|
Output: set(['a', 'b', 'c']) |
|
bleu_metric: 6.171879938074473 |
|
---------- |
|
NL: insert directory 'apps' into directory `__file__` |
|
ref: sys.path.insert(1, os.path.join(os.path.dirname(__file__), 'apps')) |
|
Output: ▁sys.path.insert(0, 'apps') |
|
bleu_metric: 24.758945556587445 |
|
---------- |
|
NL: modify sys.path for python module `subdir` |
|
ref: sys.path.append(os.path.join(os.path.dirname(__file__), 'subdir')) |
|
Output: ▁sys.path.append(subdir) |
|
bleu_metric: 13.681283243087492 |
|
---------- |
|
NL: insert a 'none' value into a sqlite3 table. |
|
ref: db.execute("INSERT INTO present VALUES('test2', ?, 10)", (None,)) |
|
Output: db.commit() |
|
bleu_metric: 1.3648974794270936 |
|
---------- |
|
NL: flatten list `list_of_menuitems` |
|
ref: [image for menuitem in list_of_menuitems for image in menuitem] |
|
Output: ▁list_of_enumerate(chain.from_iterable(list_of_menuitems)) |
|
bleu_metric: 11.368272367804307 |
|
---------- |
|
NL: append elements of a set `b` to a list `a` |
|
ref: a.extend(b) |
|
Output: a.append(b) |
|
bleu_metric: 59.46035575013605 |
|
---------- |
|
NL: append elements of a set to a list in python |
|
ref: a.extend(list(b)) |
|
Output: a = [[] for i in range(3)] |
|
bleu_metric: 11.114924776032007 |
|
---------- |
|
NL: write the data of dataframe `df` into text file `np.txt` |
|
ref: np.savetxt('c:\\data\\np.txt', df.values, fmt='%d') |
|
Output: df.to_numeric(np.txt) |
|
bleu_metric: 3.9614496879183108 |
|
---------- |
|
NL: write content of dataframe `df` into text file 'c:\\data\\pandas.txt' |
|
ref: df.to_csv('c:\\data\\pandas.txt', header=None, index=None, sep=' ', mode='a') |
|
Output: df.to_csv('c:\\data\\pandas.txt') |
|
bleu_metric: 33.15109099076485 |
|
---------- |
|
NL: split a string `x` by last occurrence of character `-` |
|
ref: print(x.rpartition('-')[0]) |
|
Output: x.split('-', 1)[-1] |
|
bleu_metric: 30.856960108358766 |
|
---------- |
|
NL: get the last part of a string before the character '-' |
|
ref: print(x.rsplit('-', 1)[0]) |
|
Output: a[-1:] + a[:-1] |
|
bleu_metric: 9.389419352536649 |
|
---------- |
|
NL: upload file using ftp |
|
ref: ftp.storlines('STOR ' + filename, open(filename, 'r')) |
|
Output: ▁ftp.quit() |
|
bleu_metric: 6.197705798903779 |
|
---------- |
|
NL: add one to the hidden web element with id 'xyz' with selenium python script |
|
ref: browser.execute_script("document.getElementById('XYZ').value+='1'") |
|
Output: ▁driver.execute_script('http://stackoverflow.com') |
|
bleu_metric: 16.310495756291736 |
|
---------- |
|
NL: create array containing the maximum value of respective elements of array `[2, 3, 4]` and array `[1, 5, 2]` |
|
ref: np.maximum([2, 3, 4], [1, 5, 2]) |
|
Output: np.argmax([2, 3, 4], [1, 5, 2]) |
|
bleu_metric: 88.67047947918724 |
|
---------- |
|
NL: print a list `l` and move first 3 elements to the end of the list |
|
ref: print(l[3:] + l[:3]) |
|
Output: l = [i for i, l in enumerate(l, 3)▁if l == 3] |
|
bleu_metric: 10.414419091986518 |
|
---------- |
|
NL: loop over files in directory '.' |
|
ref: for fn in os.listdir('.'): |
|
Output: for item in os.listdir('.') in os.listdir('.'):▁pass |
|
bleu_metric: 42.902556537105646 |
|
---------- |
|
NL: loop over files in directory `source` |
|
ref: for (root, dirs, filenames) in os.walk(source): |
|
Output: for (not▁file in os.walk(source)):▁pass |
|
bleu_metric: 45.845403319927435 |
|
---------- |
|
NL: create a random list of integers |
|
ref: [int(1000 * random.random()) for i in range(10000)] |
|
Output: ▁randomList = [random.random() for _ in range(10)] |
|
bleu_metric: 35.22146109090851 |
|
---------- |
|
NL: using %f with strftime() in python to get microseconds |
|
ref: datetime.datetime.now().strftime('%H:%M:%S.%f') |
|
Output: ▁print(strftime('%m/%d %H:%M:%S')) |
|
bleu_metric: 45.02648619040337 |
|
---------- |
|
NL: google app engine execute gql query 'select * from schedule where station = $1' with parameter `foo.key()` |
|
ref: db.GqlQuery('SELECT * FROM Schedule WHERE station = $1', foo.key()) |
|
Output: ▁cursor.execute('SELECT *▁FROM▁table▁WHERE station = $1', (foo.key()) |
|
bleu_metric: 50.76453300895118 |
|
---------- |
|
NL: filter rows in pandas starting with alphabet 'f' using regular expression. |
|
ref: df.b.str.contains('^f') |
|
Output: df[(df['a'] > 1) & (df['b'] > 1)] |
|
bleu_metric: 6.871624004919695 |
|
---------- |
|
NL: print a 2 dimensional list `tab` as a table with delimiters |
|
ref: print('\n'.join('\t'.join(str(col) for col in row) for row in tab)) |
|
Output: a = [(a[i], b[i]) for i in range(0, len(a), 2)] |
|
bleu_metric: 6.711116671457737 |
|
---------- |
|
NL: pandas: delete rows in dataframe `df` based on multiple columns values |
|
ref: df.set_index(list('BC')).drop(tuples, errors='ignore').reset_index() |
|
Output: df.loc[df.columns == [(df.columns▁!= 0).any(axis=1)] |
|
bleu_metric: 8.722785633659552 |
|
---------- |
|
NL: format the variables `self.goals` and `self.penalties` using string formatting |
|
ref: """({:d} goals, ${:d})""".format(self.goals, self.penalties) |
|
Output: ▁print('{} {}'.format(self.goals,▁self.penalties)) |
|
bleu_metric: 34.66537079680952 |
|
---------- |
|
NL: format string "({} goals, ${})" with variables `goals` and `penalties` |
|
ref: """({} goals, ${})""".format(self.goals, self.penalties) |
|
Output: """({}, ${})""".format(goals, cents) |
|
bleu_metric: 61.17470797490066 |
|
---------- |
|
NL: format string "({0.goals} goals, ${0.penalties})" |
|
ref: """({0.goals} goals, ${0.penalties})""".format(self) |
|
Output: """({0.goals}, ${0.penalties})""".format('${0.go |
|
bleu_metric: 74.24213297217366 |
|
---------- |
|
NL: convert list of lists `l` to list of integers |
|
ref: [int(''.join(str(d) for d in x)) for x in L] |
|
Output: [int(x) for x in L] |
|
bleu_metric: 26.91716452870884 |
|
---------- |
|
NL: combine elements of each list in list `l` into digits of a single integer |
|
ref: [''.join(str(d) for d in x) for x in L] |
|
Output: [int(x) for x in L] |
|
bleu_metric: 31.16211115352542 |
|
---------- |
|
NL: convert a list of lists `l` to list of integers |
|
ref: L = [int(''.join([str(y) for y in x])) for x in L] |
|
Output: [int(x) for x in L] |
|
bleu_metric: 18.058610039563465 |
|
---------- |
|
NL: write the elements of list `lines` concatenated by special character '\n' to file `myfile` |
|
ref: myfile.write('\n'.join(lines)) |
|
Output: myfile.write('\n') |
|
bleu_metric: 51.6288658561904 |
|
---------- |
|
NL: removing an element from a list based on a predicate 'x' or 'n' |
|
ref: [x for x in ['AAT', 'XAC', 'ANT', 'TTA'] if 'X' not in x and 'N' not in x] |
|
Output: [x for x in a▁if x['n'] not in b] |
|
bleu_metric: 15.169494971705259 |
|
---------- |
|
NL: remove duplicate words from a string `text` using regex |
|
ref: text = re.sub('\\b(\\w+)( \\1\\b)+', '\\1', text) |
|
Output: re.sub('\\b\\b', '', text) |
|
bleu_metric: 29.302169335308744 |
|
---------- |
|
NL: count non zero values in each column in pandas data frame |
|
ref: df.astype(bool).sum(axis=1) |
|
Output: df.groupby(level=0).agg(lambda x: x.sum()) |
|
bleu_metric: 16.559113761114784 |
|
---------- |
|
NL: search for string that matches regular expression pattern '(?<!distillr)\\\\acrotray\\.exe' in string 'c:\\somedir\\acrotray.exe' |
|
ref: re.search('(?<!Distillr)\\\\AcroTray\\.exe', 'C:\\SomeDir\\AcroTray.exe') |
|
Output: re.search('(?<!distillr)\\\adelet\\.exe', 'c:\\ |
|
bleu_metric: 42.62743987304427 |
|
---------- |
|
NL: split string 'qh qd jc kd js' into a list on white spaces |
|
ref: """QH QD JC KD JS""".split() |
|
Output: """QH QD {0} {1}""".format('QH QD {1}'.format |
|
bleu_metric: 29.615165360116247 |
|
---------- |
|
NL: search for occurrences of regex pattern '>.*<' in xml string `line` |
|
ref: print(re.search('>.*<', line).group(0)) |
|
Output: ▁print(re.search('>.*<',▁line)) |
|
bleu_metric: 66.21156208217488 |
|
---------- |
|
NL: erase all the contents of a file `filename` |
|
ref: open(filename, 'w').close() |
|
Output: open('filename', 'w').close() |
|
bleu_metric: 70.98108717509044 |
|
---------- |
|
NL: convert a string into datetime using the format '%y-%m-%d %h:%m:%s.%f' |
|
ref: datetime.datetime.strptime(string_date, '%Y-%m-%d %H:%M:%S.%f') |
|
Output: ▁datetime.datetime.strptime('%Y-%m-%d %H:%M:%S.%f') |
|
bleu_metric: 88.27916928185874 |
|
---------- |
|
NL: find the index of a list with the first element equal to '332' within the list of lists `thelist` |
|
ref: [index for index, item in enumerate(thelist) if item[0] == '332'] |
|
Output: [i for i, e in enumerate(thelist)▁if e[0] == '332'] |
|
bleu_metric: 56.9717869265984 |
|
---------- |
|
NL: lower a string `text` and remove non-alphanumeric characters aside from space |
|
ref: re.sub('[^\\sa-zA-Z0-9]', '', text).lower().strip() |
|
Output: re.sub('[^0-9a-zA-Z]+', '', text) |
|
bleu_metric: 42.32964405407573 |
|
---------- |
|
NL: remove all non-alphanumeric characters except space from a string `text` and lower it |
|
ref: re.sub('(?!\\s)[\\W_]', '', text).lower().strip() |
|
Output: re.sub('[^0-9a-zA-Z]+', '', text) |
|
bleu_metric: 31.11523617245988 |
|
---------- |
|
NL: subscript text 'h20' with '2' as subscripted in matplotlib labels for arrays 'x' and 'y'. |
|
ref: plt.plot(x, y, label='H\u2082O') |
|
Output: plt.show() |
|
bleu_metric: 6.117046115680378 |
|
---------- |
|
NL: subscript text 'h20' with '2' as subscripted in matplotlib labels for arrays 'x' and 'y'. |
|
ref: plt.plot(x, y, label='$H_2O$') |
|
Output: plt.show() |
|
bleu_metric: 6.117046115680378 |
|
---------- |
|
NL: loop over a list `mylist` if sublists length equals 3 |
|
ref: [x for x in mylist if len(x) == 3] |
|
Output: [len(mylist) for _ in range(3)] |
|
bleu_metric: 15.934326838673723 |
|
---------- |
|
NL: initialize a list `lst` of 100 objects object() |
|
ref: lst = [Object() for _ in range(100)] |
|
Output: lst = [[0] for i in range(100)] |
|
bleu_metric: 54.23782837718303 |
|
---------- |
|
NL: create list `lst` containing 100 instances of object `object` |
|
ref: lst = [Object() for i in range(100)] |
|
Output: [x for x in lst for x in range(100)] |
|
bleu_metric: 44.844165354587766 |
|
---------- |
|
NL: get the content of child tag with`href` attribute whose parent has css `someclass` |
|
ref: self.driver.find_element_by_css_selector('.someclass a').get_attribute('href') |
|
Output: href.get('someclass', '') |
|
bleu_metric: 13.739207814095348 |
|
---------- |
|
NL: joining data from dataframe `df1` with data from dataframe `df2` based on matching values of column 'date_time' in both dataframes |
|
ref: df1.merge(df2, on='Date_Time') |
|
Output: pd.merge(df1, df2,▁left_index=True,▁right_index=True,▁how=' |
|
bleu_metric: 14.071964689317513 |
|
---------- |
|
NL: use `%s` operator to print variable values `str1` inside a string |
|
ref: 'first string is: %s, second one is: %s' % (str1, 'geo.tif') |
|
Output: ▁print(str1, '%s' % ', '.join(str1, str1)) |
|
bleu_metric: 24.754295374108246 |
|
---------- |
|
NL: split a string by a delimiter in python |
|
ref: [x.strip() for x in '2.MATCHES $$TEXT$$ STRING'.split('$$TEXT$$')] |
|
Output: a.split(' ', 1)[0] |
|
bleu_metric: 6.646092160184869 |
|
---------- |
|
NL: check if directory `directory ` exists and create it if necessary |
|
ref: if (not os.path.exists(directory)): |
|
os.makedirs(directory) |
|
Output: ▁print(os.path.exists(directory)) |
|
bleu_metric: 43.84096837774454 |
|
---------- |
|
NL: check if a directory `path` exists and create it if necessary |
|
ref: distutils.dir_util.mkpath(path) |
|
Output: os.path.exists(path) |
|
bleu_metric: 42.728700639623405 |
|
---------- |
|
NL: check if a directory `path` exists and create it if necessary |
|
ref: distutils.dir_util.mkpath(path) |
|
Output: os.path.exists(path) |
|
bleu_metric: 42.728700639623405 |
|
---------- |
|
NL: check if a directory `path` exists and create it if necessary |
|
ref: os.makedirs(path) |
|
Output: os.path.exists(path) |
|
bleu_metric: 45.18010018049224 |
|
---------- |
|
NL: replace a separate word 'h3' by 'h1' in a string 'text' |
|
ref: re.sub('\\bH3\\b', 'H1', text) |
|
Output: re.sub('(?<=[a-z])([A-Z])', '\\1', ' |
|
bleu_metric: 22.898351850650936 |
|
---------- |
|
NL: substitute ascii letters in string 'aas30dsa20' with empty string '' |
|
ref: re.sub('\\D', '', 'aas30dsa20') |
|
Output: """""".join(chr(ord(c)) for c in 'Aas30dSa20')) |
|
bleu_metric: 9.727570367275343 |
|
---------- |
|
NL: get digits only from a string `aas30dsa20` using lambda function |
|
ref: """""".join([x for x in 'aas30dsa20' if x.isdigit()]) |
|
Output: """""".join([c for c in aas30dsa20▁if c.isdigit()]) |
|
bleu_metric: 62.76638518128994 |
|
---------- |
|
NL: access a tag called "name" in beautifulsoup `soup` |
|
ref: print(soup.find('name').string) |
|
Output: ▁print(soup.findAll('name')) |
|
bleu_metric: 56.810968323374965 |
|
---------- |
|
NL: get a dictionary `records` of key-value pairs in pymongo cursor `cursor` |
|
ref: records = dict((record['_id'], record) for record in cursor) |
|
Output: ▁dict([(k, v) for k, v in▁list(cursor.items())]) |
|
bleu_metric: 10.142430673893113 |
|
---------- |
|
NL: create new matrix object by concatenating data from matrix a and matrix b |
|
ref: np.concatenate((A, B)) |
|
Output: ▁numpy.concatenate([(a, b) for a, b in zip(matrix,▁matrix)]) |
|
bleu_metric: 11.002068284361833 |
|
---------- |
|
NL: concat two matrices `a` and `b` in numpy |
|
ref: np.vstack((A, B)) |
|
Output: np.concatenate(a, b) |
|
bleu_metric: 20.34404485471534 |
|
---------- |
|
NL: get the characters count in a file `filepath` |
|
ref: os.stat(filepath).st_size |
|
Output: ▁sum(v for k, v in os.path.values(filepath)▁if v > 0) |
|
bleu_metric: 11.177222547202245 |
|
---------- |
|
NL: count the occurrences of item "a" in list `l` |
|
ref: l.count('a') |
|
Output: ▁sum(1 for i in l▁if i.startswith('a')) |
|
bleu_metric: 24.64832197476761 |
|
---------- |
|
NL: count the occurrences of items in list `l` |
|
ref: Counter(l) |
|
Output: ▁sum(1 for i in l▁if i.startswith('\n') > 1) |
|
bleu_metric: 7.575731225158963 |
|
---------- |
|
NL: count the occurrences of items in list `l` |
|
ref: [[x, l.count(x)] for x in set(l)] |
|
Output: ▁sum(1 for i in l▁if i.startswith('\n') > 1) |
|
bleu_metric: 7.758410052509766 |
|
---------- |
|
NL: count the occurrences of items in list `l` |
|
ref: dict(((x, l.count(x)) for x in set(l))) |
|
Output: ▁sum(1 for i in l▁if i.startswith('\n') > 1) |
|
bleu_metric: 9.009113474307316 |
|
---------- |
|
NL: count the occurrences of item "b" in list `l` |
|
ref: l.count('b') |
|
Output: ▁sum(1 for i, j in zip(l, 'b')▁if j == j) |
|
bleu_metric: 15.450079547146164 |
|
---------- |
|
NL: copy file `srcfile` to directory `dstdir` |
|
ref: shutil.copy(srcfile, dstdir) |
|
Output: ▁shutil.copy(srcfile, dstdir) |
|
bleu_metric: 80.70557274927982 |
|
---------- |
|
NL: find the key associated with the largest value in dictionary `x` whilst key is non-zero value |
|
ref: max(k for k, v in x.items() if v != 0) |
|
Output: max(x,▁key=lambda x: x[0]) |
|
bleu_metric: 11.483394131362408 |
|
---------- |
|
NL: get the largest key whose not associated with value of 0 in dictionary `x` |
|
ref: (k for k, v in x.items() if v != 0) |
|
Output: max(k for k, v in x.items()▁if v▁!= 0) |
|
bleu_metric: 72.00242075875519 |
|
---------- |
|
NL: get the largest key in a dictionary `x` with non-zero value |
|
ref: max(k for k, v in x.items() if v != 0) |
|
Output: max(k for k, v in x.items()▁if v▁!= 0) |
|
bleu_metric: 76.74174160136337 |
|
---------- |
|
NL: put the curser at beginning of the file |
|
ref: file.seek(0) |
|
Output: time.sleep(1) |
|
bleu_metric: 27.776190340117914 |
|
---------- |
|
NL: combine values from column 'b' and column 'a' of dataframe `df` into column 'c' of datafram `df` |
|
ref: df['c'] = np.where(df['a'].isnull, df['b'], df['a']) |
|
Output: df['C'] = df['B'].apply(lambda x: x.astype(int)) |
|
bleu_metric: 15.164081046360186 |
|
---------- |
|
NL: remove key 'ele' from dictionary `d` |
|
ref: del d['ele'] |
|
Output: d =▁dict((k, v) for k, v in d.items()▁if v) |
|
bleu_metric: 5.377336385080629 |
|
---------- |
|
NL: update datetime field in `mymodel` to be the existing `timestamp` plus 100 years |
|
ref: MyModel.objects.update(timestamp=F('timestamp') + timedelta(days=36524.25)) |
|
Output: time.strftime('%Y-%m-%d %H:%M:%S', time.gmtime( |
|
bleu_metric: 7.278748444764005 |
|
---------- |
|
NL: merge list `['it']` and list `['was']` and list `['annoying']` into one list |
|
ref: ['it'] + ['was'] + ['annoying'] |
|
Output: ▁list(zip([1'it'], ['is'], ['annoYing'])) |
|
bleu_metric: 19.158743349944555 |
|
---------- |
|
NL: increment a value with leading zeroes in a number `x` |
|
ref: str(int(x) + 1).zfill(len(x)) |
|
Output: ▁numpy.zeros((x + 1) + x) |
|
bleu_metric: 19.950354926643225 |
|
---------- |
|
NL: check if a pandas dataframe `df`'s index is sorted |
|
ref: all(df.index[:-1] <= df.index[1:]) |
|
Output: df.index.sort() |
|
bleu_metric: 7.510537410248026 |
|
---------- |
|
NL: convert tuple `t` to list |
|
ref: list(t) |
|
Output: ▁list(t) |
|
bleu_metric: 68.03749333171201 |
|
---------- |
|
NL: convert list `t` to tuple |
|
ref: tuple(l) |
|
Output: tuple(t) |
|
bleu_metric: 45.180100180492246 |
|
---------- |
|
NL: convert tuple `level1` to list |
|
ref: level1 = map(list, level1) |
|
Output: ▁list(level1.from_tuples()) |
|
bleu_metric: 17.827531042796256 |
|
---------- |
|
NL: send the output of pprint object `dataobject` to file `logfile` |
|
ref: pprint.pprint(dataobject, logFile) |
|
Output: pprint(dataobject, logfile) |
|
bleu_metric: 38.73479811032991 |
|
---------- |
|
NL: get index of rows in column 'boolcol' |
|
ref: df.loc[df['BoolCol']] |
|
Output: df.index |
|
bleu_metric: 2.5225322607845957 |
|
---------- |
|
NL: create a list containing the indexes of rows where the value of column 'boolcol' in dataframe `df` are equal to true |
|
ref: df.iloc[np.flatnonzero(df['BoolCol'])] |
|
Output: df[df.groupby(['boolcol', 'value'])[0].tolist()] |
|
bleu_metric: 17.4932986566737 |
|
---------- |
|
NL: get list of indexes of rows where column 'boolcol' values match true |
|
ref: df[df['BoolCol'] == True].index.tolist() |
|
Output: [i for i, j in enumerate(['boolcol', 'true'])▁if j == j] |
|
bleu_metric: 9.579371674972275 |
|
---------- |
|
NL: get index of rows in dataframe `df` which column 'boolcol' matches value true |
|
ref: df[df['BoolCol']].index.tolist() |
|
Output: df.index = df.loc[df['boolcol'] ==▁value] |
|
bleu_metric: 23.891455818410613 |
|
---------- |
|
NL: change working directory to the directory `owd` |
|
ref: os.chdir(owd) |
|
Output: os.chdir('\\Users\\Desktop\\Desktop\\Desktop\\Desk |
|
bleu_metric: 17.001078098404225 |
|
---------- |
|
NL: insert data from a string `testfield` to sqlite db `c` |
|
ref: c.execute("INSERT INTO test VALUES (?, 'bar')", (testfield,)) |
|
Output: ▁cursor.execute('INSERT▁INTO▁table▁VALUES (%s, %s, %s)', (testfield,) |
|
bleu_metric: 36.151920269854195 |
|
---------- |
|
NL: decode string "\\x89\\n" into a normal string |
|
ref: """\\x89\\n""".decode('string_escape') |
|
Output: """\\x89\\n""".decode('utf-8') |
|
bleu_metric: 79.47545184555568 |
|
---------- |
|
NL: convert a raw string `raw_string` into a normal string |
|
ref: raw_string.decode('string_escape') |
|
Output: ▁raw_string.decode('unicode_escape') |
|
bleu_metric: 53.107253497886994 |
|
---------- |
|
NL: convert a raw string `raw_byte_string` into a normal string |
|
ref: raw_byte_string.decode('unicode_escape') |
|
Output: ▁raw_byte_string.decode('unicode_escape') |
|
bleu_metric: 80.70557274927982 |
|
---------- |
|
NL: split a string `s` with into all strings of repeated characters |
|
ref: [m.group(0) for m in re.finditer('(\\d)\\1*', s)] |
|
Output: re.findall('[^a-zA-Z]*', s) |
|
bleu_metric: 17.036282985955026 |
|
---------- |
|
NL: scatter a plot with x, y position of `np.random.randn(100)` and face color equal to none |
|
ref: plt.scatter(np.random.randn(100), np.random.randn(100), facecolors='none') |
|
Output: plt.show() |
|
bleu_metric: 0.8278521686370256 |
|
---------- |
|
NL: do a scatter plot with empty circles |
|
ref: plt.plot(np.random.randn(100), np.random.randn(100), 'o', mfc='none') |
|
Output: plt.show() |
|
bleu_metric: 0.42503347540650505 |
|
---------- |
|
NL: remove a div with a id `main-content` using beautifulsoup |
|
ref: soup.find('div', id='main-content').decompose() |
|
Output: ▁print(soup.findAll('div', class_='maincontent')) |
|
bleu_metric: 34.193725219509716 |
|
---------- |
|
NL: filter rows containing key word `ball` in column `ids` |
|
ref: df[df['ids'].str.contains('ball')] |
|
Output: [(k, v) for k, v in df.ids] |
|
bleu_metric: 11.123500809946101 |
|
---------- |
|
NL: convert index at level 0 into a column in dataframe `df` |
|
ref: df.reset_index(level=0, inplace=True) |
|
Output: df['index'] = df['index'].apply(lambda x: x.tolist()) |
|
bleu_metric: 7.592939129822969 |
|
---------- |
|
NL: add indexes in a data frame `df` to a column `index1` |
|
ref: df['index1'] = df.index |
|
Output: df['index1'] = df['index1'].index |
|
bleu_metric: 55.54570250728591 |
|
---------- |
|
NL: convert pandas index in a dataframe to columns |
|
ref: df.reset_index(level=['tick', 'obs']) |
|
Output: df.set_index(['index', 'index']) |
|
bleu_metric: 32.51279032103401 |
|
---------- |
|
NL: get reverse of list items from list 'b' using extended slicing |
|
ref: [x[::-1] for x in b] |
|
Output: [x[i:i + 2] for i in range(0, len(x), 2)] |
|
bleu_metric: 17.895706401541528 |
|
---------- |
|
NL: join each element in array `a` with element at the same index in array `b` as a tuple |
|
ref: np.array([zip(x, y) for x, y in zip(a, b)]) |
|
Output: A = [(a + b) for a, b in zip(A, B)] |
|
bleu_metric: 18.114844247735682 |
|
---------- |
|
NL: zip two 2-d arrays `a` and `b` |
|
ref: np.array(zip(a.ravel(), b.ravel()), dtype='i4,i4').reshape(a.shape) |
|
Output: np.array(zip(a, b)) |
|
bleu_metric: 10.156383094063225 |
|
---------- |
|
NL: convert list `list_of_ints` into a comma separated string |
|
ref: """,""".join([str(i) for i in list_of_ints]) |
|
Output: """""".join(list_of_ints) |
|
bleu_metric: 31.139742129493257 |
|
---------- |
|
NL: send a post request with raw data `data` and basic authentication with `username` and `password` |
|
ref: requests.post(url, data=DATA, headers=HEADERS_DICT, auth=(username, password)) |
|
Output: r =▁requests.post(url, data=data,▁headers=headers,▁files=passwords) |
|
bleu_metric: 38.57153091307505 |
|
---------- |
|
NL: find last occurrence of character '}' in string "abcd}def}" |
|
ref: 'abcd}def}'.rfind('}') |
|
Output: """abcd}def}""".rfind('}.rsplit('\\d+') |
|
bleu_metric: 42.26469376227503 |
|
---------- |
|
NL: iterate ove list `[1, 2, 3]` using list comprehension |
|
ref: print([item for item in [1, 2, 3]]) |
|
Output: ▁print(list(itertools.chain.from_iterable([1, 2, 3]))) |
|
bleu_metric: 35.3003111274967 |
|
---------- |
|
NL: extract all the values with keys 'x' and 'y' from a list of dictionaries `d` to list of tuples |
|
ref: [(x['x'], x['y']) for x in d] |
|
Output: [d['x'], d['y'], d['d'], d['x'], d[ |
|
bleu_metric: 30.398382447928807 |
|
---------- |
|
NL: get the filename without the extension from file 'hemanth.txt' |
|
ref: print(os.path.splitext(os.path.basename('hemanth.txt'))[0]) |
|
Output: ▁print(os.path.splitext('hemanth.txt')) |
|
bleu_metric: 51.55938317965318 |
|
---------- |
|
NL: create a dictionary by adding each two adjacent elements in tuple `x` as key/value pair to it |
|
ref: dict(x[i:i + 2] for i in range(0, len(x), 2)) |
|
Output: ▁dict(zip(x[::2], x[1::2])) |
|
bleu_metric: 16.45452192914717 |
|
---------- |
|
NL: create a list containing flattened list `[['a', 'b', 'c'], ['d', 'e', 'f'], ['g', 'h', 'i']]` |
|
ref: values = sum([['A', 'B', 'C'], ['D', 'E', 'F'], ['G', 'H', 'I']], []) |
|
Output: [['a', 'b', 'c'], ['d', 'e', 'f'], [' |
|
bleu_metric: 22.929399628621095 |
|
---------- |
|
NL: select rows in a dataframe `df` column 'closing_price' between two values 99 and 101 |
|
ref: df = df[(df['closing_price'] >= 99) & (df['closing_price'] <= 101)] |
|
Output: df.loc[df['cold_Price'] == 99] |
|
bleu_metric: 9.613222089577718 |
|
---------- |
|
NL: replace all occurences of newlines `\n` with `<br>` in dataframe `df` |
|
ref: df.replace({'\n': '<br>'}, regex=True) |
|
Output: df = pd.read_csv('\n').replace('\n', '<br>') |
|
bleu_metric: 33.87144423286913 |
|
---------- |
|
NL: replace all occurrences of a string `\n` by string `<br>` in a pandas data frame `df` |
|
ref: df.replace({'\n': '<br>'}, regex=True) |
|
Output: df = pd.read_csv('\n').replace('\n', '<br>') |
|
bleu_metric: 33.87144423286913 |
|
---------- |
|
NL: create a list containing each two adjacent letters in string `word` as its elements |
|
ref: [(x + y) for x, y in zip(word, word[1:])] |
|
Output: [word[i:i + 2] for i in range(0, len(word), 2)] |
|
bleu_metric: 15.253223052326929 |
|
---------- |
|
NL: get a list of pairs from a string `word` using lambda function |
|
ref: list(map(lambda x, y: x + y, word[:-1], word[1:])) |
|
Output: ▁list(word.split(',')) |
|
bleu_metric: 7.965309748053327 |
|
---------- |
|
NL: extract a url from a string `mystring` |
|
ref: print(re.findall('(https?://[^\\s]+)', myString)) |
|
Output: re.findall('[^a-zA-Z]*', myString) |
|
bleu_metric: 30.515239072390138 |
|
---------- |
|
NL: extract a url from a string `mystring` |
|
ref: print(re.search('(?P<url>https?://[^\\s]+)', myString).group('url')) |
|
Output: re.findall('[^a-zA-Z]*', myString) |
|
bleu_metric: 12.326746139034004 |
|
---------- |
|
NL: remove all special characters, punctuation and spaces from a string `mystring` using regex |
|
ref: re.sub('[^A-Za-z0-9]+', '', mystring) |
|
Output: """""".join(re.sub('\\w+', '', mystring)) |
|
bleu_metric: 40.6731552331291 |
|
---------- |
|
NL: create a datetimeindex containing 13 periods of the second friday of each month starting from date '2016-01-01' |
|
ref: pd.date_range('2016-01-01', freq='WOM-2FRI', periods=13) |
|
Output: ▁datetime.datetime.strptime('2012-01-01', '2012-01-01', '%Y-%m-%d |
|
bleu_metric: 21.54897801937284 |
|
---------- |
|
NL: create multidimensional array `matrix` with 3 rows and 2 columns in python |
|
ref: matrix = [[a, b], [c, d], [e, f]] |
|
Output: ▁matrix = [[[0, 0], [0, 0], [0, 0], [0, 0]], [[0, 0]], [ |
|
bleu_metric: 15.448396990132697 |
|
---------- |
|
NL: replace spaces with underscore |
|
ref: mystring.replace(' ', '_') |
|
Output: re.sub('(?<=[a-z])(?=[A-Z])', '\\1' |
|
bleu_metric: 9.500266321476488 |
|
---------- |
|
NL: get an absolute file path of file 'mydir/myfile.txt' |
|
ref: os.path.abspath('mydir/myfile.txt') |
|
Output: os.path.abspath('mydir/myfile.txt') |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: split string `my_string` on white spaces |
|
ref: """ """.join(my_string.split()) |
|
Output: """ """.join(my_string.split()) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: get filename without extension from file `filename` |
|
ref: os.path.splitext(filename)[0] |
|
Output: os.path.splitext(filename) |
|
bleu_metric: 64.74591278836638 |
|
---------- |
|
NL: get a list containing the sum of each element `i` in list `l` plus the previous elements |
|
ref: [sum(l[:i]) for i, _ in enumerate(l)] |
|
Output: [sum(i) for i, j in zip(l, l)] |
|
bleu_metric: 41.46278264707056 |
|
---------- |
|
NL: split a string `docs/src/scripts/temp` by `/` keeping `/` in the result |
|
ref: """Docs/src/Scripts/temp""".replace('/', '/\x00/').split('\x00') |
|
Output: ▁print(docs/src/scripts/temp.split('/')) |
|
bleu_metric: 17.379851709438395 |
|
---------- |
|
NL: shuffle columns of an numpy array 'r' |
|
ref: np.random.shuffle(np.transpose(r)) |
|
Output: np.random.shuffle(np.random.randn(r)) |
|
bleu_metric: 69.64705665515707 |
|
---------- |
|
NL: copy all values in a column 'b' to a new column 'd' in a pandas data frame 'df' |
|
ref: df['D'] = df['B'] |
|
Output: df['d'] = df['d'].values.tolist() |
|
bleu_metric: 37.392149096896674 |
|
---------- |
|
NL: find a value within nested json 'data' where the key inside another key 'b' is unknown. |
|
ref: list(data['A']['B'].values())[0]['maindata'][0]['Info'] |
|
Output: [item for item in data▁if item['b'] not in item] |
|
bleu_metric: 5.9434130655282855 |
|
---------- |
|
NL: check characters of string `string` are true predication of function `predicate` |
|
ref: all(predicate(x) for x in string) |
|
Output: ▁any(pred(x) for x in▁string.split()) |
|
bleu_metric: 33.92375549949802 |
|
---------- |
|
NL: determine number of files on a drive with python |
|
ref: os.statvfs('/').f_files - os.statvfs('/').f_ffree |
|
Output: ▁sum(i for i in os.listdir('filename')▁if os.path.isfile(filename)) |
|
bleu_metric: 10.12895233093219 |
|
---------- |
|
NL: how to get a single result from a sqlite query in python? |
|
ref: cursor.fetchone()[0] |
|
Output: ▁cursor.execute('INSERT▁INTO▁table▁VALUES (%s, %s, %s)', (var1, var2, |
|
bleu_metric: 5.912329024877923 |
|
---------- |
|
NL: convert string `user_input` into a list of integers `user_list` |
|
ref: user_list = [int(number) for number in user_input.split(',')] |
|
Output: user_list = [int(i) for i in▁user_input.split(',')] |
|
bleu_metric: 66.43548861507492 |
|
---------- |
|
NL: get a list of integers by splitting a string `user` with comma |
|
ref: [int(s) for s in user.split(',')] |
|
Output: [int(x) for x in▁user.split(',')] |
|
bleu_metric: 64.55651607183006 |
|
---------- |
|
NL: sorting a python list by two criteria |
|
ref: sorted(list, key=lambda x: (x[0], -x[1])) |
|
Output: a.sort(key=lambda x: (x[0], x[0]), reverse=True) |
|
bleu_metric: 49.45703137422567 |
|
---------- |
|
NL: sort a list of objects `ut`, based on a function `cmpfun` in descending order |
|
ref: ut.sort(key=cmpfun, reverse=True) |
|
Output: ▁sorted(ut,▁key=lambda x: func(x, -1)) |
|
bleu_metric: 10.813005337959174 |
|
---------- |
|
NL: reverse list `ut` based on the `count` attribute of each object |
|
ref: ut.sort(key=lambda x: x.count, reverse=True) |
|
Output: ▁print(reversed(ut,▁key=lambda x: x.count(), reverse=True)) |
|
bleu_metric: 45.26353562390146 |
|
---------- |
|
NL: sort a list of objects `ut` in reverse order by their `count` property |
|
ref: ut.sort(key=lambda x: x.count, reverse=True) |
|
Output: ▁sorted(ut,▁key=lambda x:▁count.count(x[0], x[0])) |
|
bleu_metric: 20.563241139732103 |
|
---------- |
|
NL: click a href button 'send' with selenium |
|
ref: driver.find_element_by_partial_link_text('Send').click() |
|
Output: ▁driver.find_element_by_css_selector('send') |
|
bleu_metric: 20.083909447408573 |
|
---------- |
|
NL: click a href button having text `send inmail` with selenium |
|
ref: driver.findElement(By.linkText('Send InMail')).click() |
|
Output: ▁driver.find_element_by_css_selector('send inmail.body.send').click() |
|
bleu_metric: 32.326275289498305 |
|
---------- |
|
NL: click a href button with text 'send inmail' with selenium |
|
ref: driver.find_element_by_link_text('Send InMail').click() |
|
Output: ▁driver.find_element_by_css_selector('send inmail').click() |
|
bleu_metric: 48.80217780091719 |
|
---------- |
|
NL: cast an int `i` to a string and concat to string 'me' |
|
ref: 'ME' + str(i) |
|
Output: """""".join(chr(i) for i in range(10)) |
|
bleu_metric: 13.308442527111023 |
|
---------- |
|
NL: sorting data in dataframe pandas |
|
ref: df.sort_values(['System_num', 'Dis']) |
|
Output: df.sort_values(['year','month'],▁ascending=[True, False]) |
|
bleu_metric: 34.52186471009711 |
|
---------- |
|
NL: prepend the line '#test firstline\n' to the contents of file 'infile' and save as the file 'outfile' |
|
ref: open('outfile', 'w').write('#test firstline\n' + open('infile').read()) |
|
Output: open('infile', '#test firstline\n') |
|
bleu_metric: 23.71937737244433 |
|
---------- |
|
NL: sort a list `l` by length of value in tuple |
|
ref: l.sort(key=lambda t: len(t[1]), reverse=True) |
|
Output: ▁sorted(l,▁key=len) |
|
bleu_metric: 8.655647308002333 |
|
---------- |
|
NL: split string `s` by words that ends with 'd' |
|
ref: re.findall('\\b(\\w+)d\\b', s) |
|
Output: re.split('\\s+', s) |
|
bleu_metric: 28.449457729768916 |
|
---------- |
|
NL: return `true` if string `foobarrrr` contains regex `ba[rzd]` |
|
ref: bool(re.search('ba[rzd]', 'foobarrrr')) |
|
Output: ▁print(re.findall('\\b[A-Z]', 'foobarrarrrrrr')) |
|
bleu_metric: 29.452884374019465 |
|
---------- |
|
NL: removing duplicates in list `t` |
|
ref: list(set(t)) |
|
Output: ▁list(set(t)) |
|
bleu_metric: 78.60753021519787 |
|
---------- |
|
NL: removing duplicates in list `source_list` |
|
ref: list(set(source_list)) |
|
Output: ▁print([item for item in▁list(source_list)▁if item.endswith('item')]) |
|
bleu_metric: 11.295714543953919 |
|
---------- |
|
NL: removing duplicates in list `abracadabra` |
|
ref: list(OrderedDict.fromkeys('abracadabra')) |
|
Output: [dict((x / y) for x, y in▁itertools.groupby(lambda x: x.group(0)) |
|
bleu_metric: 8.635800047213174 |
|
---------- |
|
NL: convert array `a` into a list |
|
ref: numpy.array(a).reshape(-1).tolist() |
|
Output: ▁list(array.from_iterable(a)) |
|
bleu_metric: 16.778292801990535 |
|
---------- |
|
NL: convert the first row of numpy matrix `a` to a list |
|
ref: numpy.array(a)[0].tolist() |
|
Output: a = np.array(a) |
|
bleu_metric: 32.2645258949984 |
|
---------- |
|
NL: in `soup`, get the content of the sibling of the `td` tag with text content `address:` |
|
ref: print(soup.find(text='Address:').findNext('td').contents[0]) |
|
Output: soup.find_element_by_xpath("//p[@id='id']/text()/ |
|
bleu_metric: 9.699583930275937 |
|
---------- |
|
NL: convert elements of each tuple in list `l` into a string separated by character `@` |
|
ref: """ """.join([('%d@%d' % t) for t in l]) |
|
Output: """""".join(l[0] for l in zip(l[::2], l[1::2])) |
|
bleu_metric: 32.31269177549822 |
|
---------- |
|
NL: convert each tuple in list `l` to a string with '@' separating the tuples' elements |
|
ref: """ """.join([('%d@%d' % (t[0], t[1])) for t in l]) |
|
Output: [(x, y) for x, y in zip(l, l[::2], l[1::2])] |
|
bleu_metric: 8.274984205902886 |
|
---------- |
|
NL: get the html from the current web page of a selenium driver |
|
ref: driver.execute_script('return document.documentElement.outerHTML;') |
|
Output: ▁driver.find_element_by_css_selector('http://www.google.com/') |
|
bleu_metric: 16.24355752882384 |
|
---------- |
|
NL: get all matches with regex pattern `\\d+[xx]` in list of string `teststr` |
|
ref: [i for i in teststr if re.search('\\d+[xX]', i)] |
|
Output: re.findall('\\d+[xx]', teststr) |
|
bleu_metric: 29.180753193172116 |
|
---------- |
|
NL: select values from column 'a' for which corresponding values in column 'b' will be greater than 50, and in column 'c' - equal 900 in dataframe `df` |
|
ref: df['A'][(df['B'] > 50) & (df['C'] == 900)] |
|
Output: df['b'].str[0].isin(['c', 'a']) |
|
bleu_metric: 12.146852493064019 |
|
---------- |
|
NL: sort dictionary `o` in ascending order based on its keys and items |
|
ref: sorted(o.items()) |
|
Output: ▁sorted(list(o.items()),▁key=lambda x: x[1]) |
|
bleu_metric: 29.452884374019472 |
|
---------- |
|
NL: get sorted list of keys of dict `d` |
|
ref: sorted(d) |
|
Output: ▁sorted(list(d.items()),▁key=lambda x: x[1]) |
|
bleu_metric: 9.043565779655339 |
|
---------- |
|
NL: how to sort dictionaries by keys in python |
|
ref: sorted(d.items()) |
|
Output: ▁sorted(list(d.items()),▁key=lambda x: x[1]) |
|
bleu_metric: 29.452884374019472 |
|
---------- |
|
NL: convert string "1" into integer |
|
ref: int('1') |
|
Output: int('1', 2) |
|
bleu_metric: 58.143073696821936 |
|
---------- |
|
NL: function to convert strings into integers |
|
ref: int() |
|
Output: int(''.join(map(str, s))) |
|
bleu_metric: 12.729922658368398 |
|
---------- |
|
NL: convert items in `t1` to integers |
|
ref: T2 = [map(int, x) for x in T1] |
|
Output: int(''.join(map(str, t1))) |
|
bleu_metric: 12.512236921161914 |
|
---------- |
|
NL: call a shell script `./test.sh` using subprocess |
|
ref: subprocess.call(['./test.sh']) |
|
Output: subprocess.call(['./test.sh']) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: call a shell script `notepad` using subprocess |
|
ref: subprocess.call(['notepad']) |
|
Output: subprocess.call(['notepad']) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: combine lists `l1` and `l2` by alternating their elements |
|
ref: [val for pair in zip(l1, l2) for val in pair] |
|
Output: [(x + y) for x, y in zip(l1, l2)] |
|
bleu_metric: 40.59264050928986 |
|
---------- |
|
NL: encode string 'data to be encoded' |
|
ref: encoded = base64.b64encode('data to be encoded') |
|
Output: 'data to be encoded'.encode('data to be encoded') |
|
bleu_metric: 50.495676290868666 |
|
---------- |
|
NL: encode a string `data to be encoded` to `ascii` encoding |
|
ref: encoded = 'data to be encoded'.encode('ascii') |
|
Output: ▁print(ascii.encode('data to be encoded')) |
|
bleu_metric: 51.09375879171261 |
|
---------- |
|
NL: parse tab-delimited csv file 'text.txt' into a list |
|
ref: lol = list(csv.reader(open('text.txt', 'rb'), delimiter='\t')) |
|
Output: ['text.txt', 'rb').split(',') |
|
bleu_metric: 35.4953120381003 |
|
---------- |
|
NL: get attribute `my_str` of object `my_object` |
|
ref: getattr(my_object, my_str) |
|
Output: ▁getattr(my_str, my_object) |
|
bleu_metric: 26.26909894424158 |
|
---------- |
|
NL: group a list of dicts `ld` into one dict by key |
|
ref: print(dict(zip(LD[0], zip(*[list(d.values()) for d in LD])))) |
|
Output: mydict = {k: v for k, v in▁list(d.items())} |
|
bleu_metric: 13.839118500778957 |
|
---------- |
|
NL: how do i sum the first value in each tuple in a list of tuples in python? |
|
ref: sum([pair[0] for pair in list_of_pairs]) |
|
Output: ▁sum(x[0] for x in▁rows) |
|
bleu_metric: 30.130404892785684 |
|
---------- |
|
NL: convert unicode string u"{'code1':1,'code2':1}" into dictionary |
|
ref: d = ast.literal_eval("{'code1':1,'code2':1}") |
|
Output: ▁dict(('{'code1':1,'code2':1}'.encode('unicode_escape') |
|
bleu_metric: 61.32878268086118 |
|
---------- |
|
NL: find all words in a string `mystring` that start with the `$` sign |
|
ref: [word for word in mystring.split() if word.startswith('$')] |
|
Output: re.findall('\\w+', mystring) |
|
bleu_metric: 8.395097551291249 |
|
---------- |
|
NL: remove any url within string `text` |
|
ref: text = re.sub('^https?:\\/\\/.*[\\r\\n]*', '', text, flags=re.MULTILINE) |
|
Output: ▁url = re.sub('▁?\\s+', '', text) |
|
bleu_metric: 21.464898124935406 |
|
---------- |
|
NL: replace all elements in array `a` that are not present in array `[1, 3, 4]` with zeros |
|
ref: np.where(np.in1d(A, [1, 3, 4]).reshape(A.shape), A, 0) |
|
Output: np.where(np.isnan(a), [1, 3, 4]) |
|
bleu_metric: 40.9574484442826 |
|
---------- |
|
NL: calculate mean across dimension in a 2d array `a` |
|
ref: np.mean(a, axis=1) |
|
Output: np.mean(a,▁axis=1) |
|
bleu_metric: 76.11606003349893 |
|
---------- |
|
NL: running r script '/pathto/myrscript.r' from python |
|
ref: subprocess.call(['/usr/bin/Rscript', '--vanilla', '/pathto/MyrScript.r']) |
|
Output: os.system('/pathto/myrscript.r') |
|
bleu_metric: 10.462313403993925 |
|
---------- |
|
NL: run r script '/usr/bin/rscript --vanilla /pathto/myrscript.r' |
|
ref: subprocess.call('/usr/bin/Rscript --vanilla /pathto/MyrScript.r', shell=True) |
|
Output: os.system('/usr/bin/rscript --vanilla /pathto/myrscript.r') |
|
bleu_metric: 45.63981491147585 |
|
---------- |
|
NL: add a header to a csv file |
|
ref: writer.writeheader() |
|
Output: ▁writer.writeheader() |
|
bleu_metric: 72.59795291154771 |
|
---------- |
|
NL: replacing nan in the dataframe `df` with row average |
|
ref: df.fillna(df.mean(axis=1), axis=1) |
|
Output: df.fillna(lambda x: x.fillna(x.mean(),▁axis=1)) |
|
bleu_metric: 31.449494592022948 |
|
---------- |
|
NL: convert unix timestamp '1347517370' to formatted string '%y-%m-%d %h:%m:%s' |
|
ref: time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(1347517370)) |
|
Output: """%Y-%m-%d %H:%M:%S') |
|
bleu_metric: 57.04022584361268 |
|
---------- |
|
NL: call a base class's class method `do` from derived class `derived` |
|
ref: super(Derived, cls).do(a) |
|
Output: super(Do,▁self).__init__(*args,▁**kwargs) |
|
bleu_metric: 13.26475916741222 |
|
---------- |
|
NL: selecting rows in numpy ndarray 'a', where the value in the first column is 0 and value in the second column is 1 |
|
ref: a[np.where((a[:, (0)] == 0) * (a[:, (1)] == 1))] |
|
Output: A[np.isnan(a[:, (1)])] |
|
bleu_metric: 21.823239874972007 |
|
---------- |
|
NL: separate words delimited by one or more spaces into a list |
|
ref: re.split(' +', 'hello world sample text') |
|
Output: [' '.join(l) for l in re.split('\\s+','', s)] |
|
bleu_metric: 23.977362037775197 |
|
---------- |
|
NL: length of longest element in list `words` |
|
ref: len(max(words, key=len)) |
|
Output: len(words) - len(words) |
|
bleu_metric: 21.258637840736228 |
|
---------- |
|
NL: get the value associated with unicode key 'from_user' of first dictionary in list `result` |
|
ref: result[0]['from_user'] |
|
Output: ▁print([x['from_user'] for x in▁list(result.items())]) |
|
bleu_metric: 19.427446513842177 |
|
---------- |
|
NL: retrieve each line from a file 'file.txt' as a list |
|
ref: [line.split() for line in open('File.txt')] |
|
Output: open('file.txt', 'r') |
|
bleu_metric: 16.725016271836772 |
|
---------- |
|
NL: swap keys with values in a dictionary `a` |
|
ref: res = dict((v, k) for k, v in a.items()) |
|
Output: ▁dict((v, k) for k, v in a.items()) |
|
bleu_metric: 90.21315316859231 |
|
---------- |
|
NL: open a file `path/to/file_name.ext` in write mode |
|
ref: new_file = open('path/to/FILE_NAME.ext', 'w') |
|
Output: os.system('path/to/file_name.ext') |
|
bleu_metric: 40.33687971800765 |
|
---------- |
|
NL: how to count distinct values in a column of a pandas group by object? |
|
ref: df.groupby(['col1', 'col2'])['col3'].nunique().reset_index() |
|
Output: df.groupby(['col1', 'col2']).apply(lambda x: x.groupby(' |
|
bleu_metric: 54.116466213090966 |
|
---------- |
|
NL: check if any key in the dictionary `dict1` starts with the string `emp$$` |
|
ref: any(key.startswith('EMP$$') for key in dict1) |
|
Output: ▁any(k for k, v in▁dict1.items()▁if 'emp$$' in k) |
|
bleu_metric: 13.217947626377288 |
|
---------- |
|
NL: create list of values from dictionary `dict1` that have a key that starts with 'emp$$' |
|
ref: [value for key, value in list(dict1.items()) if key.startswith('EMP$$')] |
|
Output: [d['emp$'] for d in▁dict1.values()] |
|
bleu_metric: 12.254981271073301 |
|
---------- |
|
NL: convert a pandas series `sf` into a pandas dataframe `df` with columns `email` and `list` |
|
ref: pd.DataFrame({'email': sf.index, 'list': sf.values}) |
|
Output: df = pd.DataFrame(sf,▁columns=['email', 'list']) |
|
bleu_metric: 35.69768415530451 |
|
---------- |
|
NL: print elements of list `list` seperated by tabs `\t` |
|
ref: print('\t'.join(map(str, list))) |
|
Output: ▁print('\t'.join(map(str,▁list))) |
|
bleu_metric: 77.39321540474097 |
|
---------- |
|
NL: print unicode string '\xd0\xbf\xd1\x80\xd0\xb8' with utf-8 |
|
ref: print('\xd0\xbf\xd1\x80\xd0\xb8'.encode('raw_unicode_escape')) |
|
Output: ▁print('\xd0\xbf\xd1\x80\xd0\xb8'.encode( |
|
bleu_metric: 75.96292058519337 |
|
---------- |
|
NL: encode a latin character in string `sopet\xc3\xb3n` properly |
|
ref: 'Sopet\xc3\xb3n'.encode('latin-1').decode('utf-8') |
|
Output: """sopet\xc3\xb3n""".encode('latin') |
|
bleu_metric: 38.377836342588495 |
|
---------- |
|
NL: resized image `image` to width, height of `(x, y)` with filter of `antialias` |
|
ref: image = image.resize((x, y), Image.ANTIALIAS) |
|
Output: ▁image.reset_image(image, (x, y)) |
|
bleu_metric: 34.79998616163817 |
|
---------- |
|
NL: regex, find "n"s only in the middle of string `s` |
|
ref: re.findall('n(?<=[^n]n)n+(?=[^n])(?i)', s) |
|
Output: re.findall('\\d+', s) |
|
bleu_metric: 13.004547755725982 |
|
---------- |
|
NL: display the float `1/3*100` as a percentage |
|
ref: print('{0:.0f}%'.format(1.0 / 3 * 100)) |
|
Output: ▁print('{0:.2f}'.format(1/3*100)) |
|
bleu_metric: 65.24084871752925 |
|
---------- |
|
NL: sort a list of dictionary `mylist` by the key `title` |
|
ref: mylist.sort(key=lambda x: x['title']) |
|
Output: mylist.sort(key=lambda x: x['title']) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: sort a list `l` of dicts by dict value 'title' |
|
ref: l.sort(key=lambda x: x['title']) |
|
Output: ▁sorted(l,▁key=itemgetter('title', 'title')) |
|
bleu_metric: 15.448759309616733 |
|
---------- |
|
NL: sort a list of dictionaries by the value of keys 'title', 'title_url', 'id' in ascending order. |
|
ref: l.sort(key=lambda x: (x['title'], x['title_url'], x['id'])) |
|
Output: ▁sorted(list_of_dicts,▁key=lambda x: x['title']['title'], reverse=Tru |
|
bleu_metric: 34.214468780181804 |
|
---------- |
|
NL: find 10 largest differences between each respective elements of list `l1` and list `l2` |
|
ref: heapq.nlargest(10, range(len(l1)), key=lambda i: abs(l1[i] - l2[i])) |
|
Output: max(l1,▁key=lambda x: (x[1], x[0]), reverse=True) |
|
bleu_metric: 11.878881948379775 |
|
---------- |
|
NL: beautifulsoup find all 'span' elements in html string `soup` with class of 'stargryb sp' |
|
ref: soup.find_all('span', {'class': 'starGryB sp'}) |
|
Output: soup.find_all('span', class_='stargryb.txt') |
|
bleu_metric: 37.90023910380332 |
|
---------- |
|
NL: write records in dataframe `df` to table 'test' in schema 'a_schema' |
|
ref: df.to_sql('test', engine, schema='a_schema') |
|
Output: df.to_csv('test') |
|
bleu_metric: 23.118543024585154 |
|
---------- |
|
NL: extract brackets from string `s` |
|
ref: brackets = re.sub('[^(){}[\\]]', '', s) |
|
Output: re.findall('\\[(\\w+)\\]', s) |
|
bleu_metric: 28.446938709683227 |
|
---------- |
|
NL: remove duplicate elements from list 'l' |
|
ref: list(dict((x[0], x) for x in L).values()) |
|
Output: [x for x in l▁if x not in x] |
|
bleu_metric: 11.000288081592606 |
|
---------- |
|
NL: read a file `file` without newlines |
|
ref: [line.rstrip('\n') for line in file] |
|
Output: open('file', 'w').readline() |
|
bleu_metric: 13.399118318121793 |
|
---------- |
|
NL: get the position of item 1 in `testlist` |
|
ref: [i for (i, x) in enumerate(testlist) if (x == 1)] |
|
Output: ▁print(testlist.position()) |
|
bleu_metric: 6.435022756527756 |
|
---------- |
|
NL: get the position of item 1 in `testlist` |
|
ref: [i for (i, x) in enumerate(testlist) if (x == 1)] |
|
Output: ▁print(testlist.position()) |
|
bleu_metric: 6.435022756527756 |
|
---------- |
|
NL: get the position of item 1 in `testlist` |
|
ref: for i in [i for (i, x) in enumerate(testlist) if (x == 1)]: |
|
pass |
|
Output: ▁print(testlist.position()) |
|
bleu_metric: 4.559019536899008 |
|
---------- |
|
NL: get the position of item 1 in `testlist` |
|
ref: for i in (i for (i, x) in enumerate(testlist) if (x == 1)): |
|
pass |
|
Output: ▁print(testlist.position()) |
|
bleu_metric: 5.045384493046664 |
|
---------- |
|
NL: get the position of item 1 in `testlist` |
|
ref: gen = (i for (i, x) in enumerate(testlist) if (x == 1)) |
|
for i in gen: |
|
pass |
|
Output: ▁print(testlist.position()) |
|
bleu_metric: 3.8410531655908353 |
|
---------- |
|
NL: get the position of item `element` in list `testlist` |
|
ref: print(testlist.index(element)) |
|
Output: ▁print(testlist.index(element)) |
|
bleu_metric: 82.42367502646054 |
|
---------- |
|
NL: get the position of item `element` in list `testlist` |
|
ref: try: |
|
print(testlist.index(element)) |
|
except ValueError: |
|
pass |
|
Output: ▁print(testlist.index(element)) |
|
bleu_metric: 52.74890952658116 |
|
---------- |
|
NL: find the first element of the tuple with the maximum second element in a list of tuples `lis` |
|
ref: max(lis, key=lambda item: item[1])[0] |
|
Output: max(lis,▁key=lambda x: x[1])[0] |
|
bleu_metric: 60.39435155169263 |
|
---------- |
|
NL: get the item at index 0 from the tuple that has maximum value at index 1 in list `lis` |
|
ref: max(lis, key=itemgetter(1))[0] |
|
Output: max(enumerate(a),▁key=lambda x: x[1])[0] |
|
bleu_metric: 27.274191069381914 |
|
---------- |
|
NL: make a delay of 1 second |
|
ref: time.sleep(1) |
|
Output: time.sleep(1) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: convert list of tuples `l` to a string |
|
ref: """, """.join('(' + ', '.join(i) + ')' for i in L) |
|
Output: """""".join(l) |
|
bleu_metric: 14.164334116374599 |
|
---------- |
|
NL: django set default value of field `b` equal to '0000000' |
|
ref: b = models.CharField(max_length=7, default='0000000', editable=False) |
|
Output: super(B,▁self).save(*args,▁**kwargs) |
|
bleu_metric: 8.945053454772305 |
|
---------- |
|
NL: sort lis `list5` in ascending order based on the degrees value of its elements |
|
ref: sorted(list5, lambda x: (degree(x), x)) |
|
Output: ▁sorted(list5,▁key=lambda x: int(x[0])) |
|
bleu_metric: 28.571962561926444 |
|
---------- |
|
NL: how do i perform secondary sorting in python? |
|
ref: sorted(list5, key=lambda vertex: (degree(vertex), vertex)) |
|
Output: ▁sorted(list(range(10)),▁key=lambda x: x[1]) |
|
bleu_metric: 15.94000950514835 |
|
---------- |
|
NL: convert a list into a generator object |
|
ref: (n for n in [1, 2, 3, 5]) |
|
Output: ▁list(itertools.product(list(range(10)),▁repeat=4)) |
|
bleu_metric: 8.282282660969601 |
|
---------- |
|
NL: remove elements from list `oldlist` that have an index number mentioned in list `removelist` |
|
ref: newlist = [v for i, v in enumerate(oldlist) if i not in removelist] |
|
Output: [x for x in a▁if x not in b] |
|
bleu_metric: 11.298101090980193 |
|
---------- |
|
NL: open a file `yourfile.txt` in write mode |
|
ref: f = open('yourfile.txt', 'w') |
|
Output: open('yourfile.txt', 'r') |
|
bleu_metric: 67.09548263862051 |
|
---------- |
|
NL: get attribute 'attr' from object `obj` |
|
ref: getattr(obj, 'attr') |
|
Output: ▁getattr(obj, 'attr') |
|
bleu_metric: 80.70557274927982 |
|
---------- |
|
NL: convert tuple of tuples `(('aa',), ('bb',), ('cc',))` to tuple |
|
ref: from functools import reduce |
|
reduce(lambda a, b: a + b, (('aa',), ('bb',), ('cc',))) |
|
Output: tuple(('aa',), ('bb',), ('cc',)) |
|
bleu_metric: 50.621900464488824 |
|
---------- |
|
NL: convert tuple of tuples `(('aa',), ('bb',), ('cc',))` to list in one line |
|
ref: map(lambda a: a[0], (('aa',), ('bb',), ('cc',))) |
|
Output: ▁list(('aa',), ('bb',), ('cc',)) |
|
bleu_metric: 64.0614517827111 |
|
---------- |
|
NL: python pandas: how to replace a characters in a column of a dataframe? |
|
ref: df['range'].replace(',', '-', inplace=True) |
|
Output: df.apply(lambda x: x.replace(',', '').replace(',', '')) |
|
bleu_metric: 30.713730826344694 |
|
---------- |
|
NL: unzip the list `[('a', 1), ('b', 2), ('c', 3), ('d', 4)]` |
|
ref: zip(*[('a', 1), ('b', 2), ('c', 3), ('d', 4)]) |
|
Output: zip([('a', 1), ('b', 2), ('c', 3), ('d', 4)] |
|
bleu_metric: 89.10617687473993 |
|
---------- |
|
NL: unzip the list `[('a', 1), ('b', 2), ('c', 3), ('d', 4)]` |
|
ref: zip(*[('a', 1), ('b', 2), ('c', 3), ('d', 4)]) |
|
Output: zip([('a', 1), ('b', 2), ('c', 3), ('d', 4)] |
|
bleu_metric: 89.10617687473993 |
|
---------- |
|
NL: unzip list `original` |
|
ref: result = ([a for (a, b) in original], [b for (a, b) in original]) |
|
Output: zip(*Ordered) |
|
bleu_metric: 0.7985269443272172 |
|
---------- |
|
NL: unzip list `original` and return a generator |
|
ref: result = ((a for (a, b) in original), (b for (a, b) in original)) |
|
Output: ▁return (i for i in range(10)▁if i < 0 for i in range(10)) |
|
bleu_metric: 10.587752134048651 |
|
---------- |
|
NL: unzip list `[('a', 1), ('b', 2), ('c', 3), ('d', 4), ('e', )]` |
|
ref: zip(*[('a', 1), ('b', 2), ('c', 3), ('d', 4), ('e',)]) |
|
Output: zip([('a', 1), ('b', 2), ('c', 3), ('d', 4), |
|
bleu_metric: 73.36039503547302 |
|
---------- |
|
NL: unzip list `[('a', 1), ('b', 2), ('c', 3), ('d', 4), ('e', )]` and fill empty results with none |
|
ref: map(None, *[('a', 1), ('b', 2), ('c', 3), ('d', 4), ('e',)]) |
|
Output: zip(*[('a', 1), ('b', 2), ('c', 3), ('d', 4 |
|
bleu_metric: 64.62811194838824 |
|
---------- |
|
NL: encode `decimal('3.9')` to a json string |
|
ref: json.dumps(Decimal('3.9')) |
|
Output: ▁print(json.dumps(decimal('Temperature (\\d+)))) |
|
bleu_metric: 22.656720908801994 |
|
---------- |
|
NL: add key "mynewkey" to dictionary `d` with value "mynewvalue" |
|
ref: d['mynewkey'] = 'mynewvalue' |
|
Output: d = {'mynewkey':'mynewvalue','mynewkey':'mynewvalue'} |
|
bleu_metric: 17.976451428761386 |
|
---------- |
|
NL: add key 'a' to dictionary `data` with value 1 |
|
ref: data.update({'a': 1, }) |
|
Output: data.update({'a': 1, 'b': 1}) |
|
bleu_metric: 63.83240325919925 |
|
---------- |
|
NL: add key 'a' to dictionary `data` with value 1 |
|
ref: data.update(dict(a=1)) |
|
Output: data.update({'a': 1, 'b': 1}) |
|
bleu_metric: 21.951524426618455 |
|
---------- |
|
NL: add key 'a' to dictionary `data` with value 1 |
|
ref: data.update(a=1) |
|
Output: data.update({'a': 1, 'b': 1}) |
|
bleu_metric: 21.951524426618455 |
|
---------- |
|
NL: find maximal value in matrix `matrix` |
|
ref: max([max(i) for i in matrix]) |
|
Output: np.max(matrix,▁axis=0) |
|
bleu_metric: 15.233734832972273 |
|
---------- |
|
NL: round number `answer` to 2 precision after the decimal point |
|
ref: answer = str(round(answer, 2)) |
|
Output: ▁round(answer, 2) |
|
bleu_metric: 49.196255036686594 |
|
---------- |
|
NL: extract ip address from an html string |
|
ref: ip = re.findall('[0-9]+(?:\\.[0-9]+){3}', s) |
|
Output: re.findall('[a-zA-Z0-9-]+', text) |
|
bleu_metric: 20.302505814938357 |
|
---------- |
|
NL: filter dataframe `df` by values in column `a` that appear more than once |
|
ref: df.groupby('A').filter(lambda x: len(x) > 1) |
|
Output: df.filter(['a', 'b']) |
|
bleu_metric: 13.360392338069724 |
|
---------- |
|
NL: append each line in file `myfile` into a list |
|
ref: [x for x in myfile.splitlines() if x != ''] |
|
Output: with open('myfile', 'w').append(line) |
|
bleu_metric: 9.082300379267782 |
|
---------- |
|
NL: get a list of integers `lst` from a file `filename.txt` |
|
ref: lst = map(int, open('filename.txt').readlines()) |
|
Output: [int(x) for x in open('filename.txt', 'lst')] |
|
bleu_metric: 34.46913316729032 |
|
---------- |
|
NL: add color bar with image `mappable` to plot `plt` |
|
ref: plt.colorbar(mappable=mappable, cax=ax3) |
|
Output: plt.show() |
|
bleu_metric: 11.914378950211951 |
|
---------- |
|
NL: count most frequent 100 words in column 'text' of dataframe `df` |
|
ref: Counter(' '.join(df['text']).split()).most_common(100) |
|
Output: df['text'].str.contains(100) |
|
bleu_metric: 27.101674478567933 |
|
---------- |
|
NL: python split a string using regex |
|
ref: re.findall('(.+?):(.+?)\\b ?', text) |
|
Output: re.split('\\s+', s) |
|
bleu_metric: 9.868832370006283 |
|
---------- |
|
NL: generate all 2-element subsets of tuple `(1, 2, 3)` |
|
ref: list(itertools.combinations((1, 2, 3), 2)) |
|
Output: ▁list(itertools.product(list(range(1, 2, 3)),▁repeat=4)) |
|
bleu_metric: 39.47641631338841 |
|
---------- |
|
NL: get a value of datetime.today() in the utc time zone |
|
ref: datetime.now(pytz.utc) |
|
Output: ▁datetime.utcnow().strftime('%Y-%m-%d %H:%M') |
|
bleu_metric: 8.085298080223222 |
|
---------- |
|
NL: get a new list `list2`by removing empty list from a list of lists `list1` |
|
ref: list2 = [x for x in list1 if x != []] |
|
Output: ▁list2 = [x for x in▁list1▁if x is not▁None] |
|
bleu_metric: 39.5373839333436 |
|
---------- |
|
NL: create `list2` to contain the lists from list `list1` excluding the empty lists from `list1` |
|
ref: list2 = [x for x in list1 if x] |
|
Output: ▁list2 = [[] for i in▁list1, 0] |
|
bleu_metric: 18.842393723950337 |
|
---------- |
|
NL: django response with json `data` |
|
ref: return HttpResponse(data, mimetype='application/json') |
|
Output: ▁return HttpResponse(json.dumps(data)) |
|
bleu_metric: 29.361568020583483 |
|
---------- |
|
NL: get all text that is not enclosed within square brackets in string `example_str` |
|
ref: re.findall('(.*?)\\[.*?\\]', example_str) |
|
Output: ▁example_str.split('\\[(\\w+)\\]', '\\[\\]]') |
|
bleu_metric: 23.62618715634458 |
|
---------- |
|
NL: use a regex to get all text in a string `example_str` that is not surrounded by square brackets |
|
ref: re.findall('(.*?)(?:\\[.*?\\]|$)', example_str) |
|
Output: ▁print(re.findall('\\[(\\w+)\\]',▁example_str)) |
|
bleu_metric: 27.808268092146015 |
|
---------- |
|
NL: get whatever is between parentheses as a single match, and any char outside as an individual match in string '(zyx)bc' |
|
ref: re.findall('\\(.+?\\)|\\w', '(zyx)bc') |
|
Output: re.search('(zyx)bc', '(zyx)bc') |
|
bleu_metric: 37.12324840533176 |
|
---------- |
|
NL: match regex '\\((.*?)\\)|(\\w)' with string '(zyx)bc' |
|
ref: re.findall('\\((.*?)\\)|(\\w)', '(zyx)bc') |
|
Output: re.findall('\\((.*?)\\)(\\w)', '(zyx) |
|
bleu_metric: 79.99881739549791 |
|
---------- |
|
NL: match multiple regex patterns with the alternation operator `|` in a string `(zyx)bc` |
|
ref: re.findall('\\(.*?\\)|\\w', '(zyx)bc') |
|
Output: re.findall('(?<=[a-z])(?=[A-Z])', '(zy |
|
bleu_metric: 25.2840740779747 |
|
---------- |
|
NL: formate each string cin list `elements` into pattern '%{0}%' |
|
ref: elements = ['%{0}%'.format(element) for element in elements] |
|
Output: re.sub('[\\W_]+', '', '\\1', '\\1', '\ |
|
bleu_metric: 5.517784889816492 |
|
---------- |
|
NL: open a background process 'background-process' with arguments 'arguments' |
|
ref: subprocess.Popen(['background-process', 'arguments']) |
|
Output: subprocess.call(['background-process', 'arguments']) |
|
bleu_metric: 85.78928092681434 |
|
---------- |
|
NL: get list of values from dictionary 'mydict' w.r.t. list of keys 'mykeys' |
|
ref: [mydict[x] for x in mykeys] |
|
Output: [d['mykey'] for d in mydict] |
|
bleu_metric: 18.69300079996002 |
|
---------- |
|
NL: convert list `[('name', 'joe'), ('age', 22)]` into a dictionary |
|
ref: dict([('Name', 'Joe'), ('Age', 22)]) |
|
Output: ▁dict([('name', 'joe'), ('age', 22)]) |
|
bleu_metric: 58.41177597069678 |
|
---------- |
|
NL: average each two columns of array `data` |
|
ref: data.reshape(-1, j).mean(axis=1).reshape(data.shape[0], -1) |
|
Output: np.mean(np.mean(a.shape[0],▁axis=1)) |
|
bleu_metric: 31.214272516254898 |
|
---------- |
|
NL: double backslash escape all double quotes in string `s` |
|
ref: print(s.encode('unicode-escape').replace('"', '\\"')) |
|
Output: ▁print(s.replace('"', '')) |
|
bleu_metric: 42.801426144397794 |
|
---------- |
|
NL: split a string into a list of words and whitespace |
|
ref: re.split('(\\W+)', s) |
|
Output: [s.split() for s in re.findall('\\S+[^\\S+]+', |
|
bleu_metric: 12.913533075470381 |
|
---------- |
|
NL: plotting stacked barplots on a panda data frame |
|
ref: df.plot(kind='barh', stacked=True) |
|
Output: df.plot(kind='bar',▁stacked=True) |
|
bleu_metric: 66.75075987129311 |
|
---------- |
|
NL: reverse the keys and values in a dictionary `mydictionary` |
|
ref: {i[1]: i[0] for i in list(myDictionary.items())} |
|
Output: ▁dict((v, k) for k, v in mydict.items()) |
|
bleu_metric: 20.467124548606286 |
|
---------- |
|
NL: finding the index of elements containing substring 'how' and 'what' in a list of strings 'mylist'. |
|
ref: [i for i, j in enumerate(myList) if 'how' in j.lower() or 'what' in j.lower()] |
|
Output: [item for item in mylist▁if 'how' in item] |
|
bleu_metric: 11.11586813181086 |
|
---------- |
|
NL: check if object `obj` is a string |
|
ref: isinstance(obj, str) |
|
Output: isinstance(obj, str) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: check if object `o` is a string |
|
ref: isinstance(o, str) |
|
Output: isinstance(o, str) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: check if object `o` is a string |
|
ref: (type(o) is str) |
|
Output: isinstance(o, str) |
|
bleu_metric: 26.78284959130086 |
|
---------- |
|
NL: check if object `o` is a string |
|
ref: isinstance(o, str) |
|
Output: isinstance(o, str) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: check if `obj_to_test` is a string |
|
ref: isinstance(obj_to_test, str) |
|
Output: isinstance(obj_to_test, str) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: append list `list1` to `list2` |
|
ref: list2.extend(list1) |
|
Output: ▁list2 = [[] for i in range(1)] |
|
bleu_metric: 9.672649511413093 |
|
---------- |
|
NL: append list `mylog` to `list1` |
|
ref: list1.extend(mylog) |
|
Output: ▁list1.append(mylog) |
|
bleu_metric: 45.18010018049224 |
|
---------- |
|
NL: append list `a` to `c` |
|
ref: c.extend(a) |
|
Output: a.append(c) |
|
bleu_metric: 30.21375397356768 |
|
---------- |
|
NL: append items in list `mylog` to `list1` |
|
ref: for line in mylog: |
|
list1.append(line) |
|
Output: ▁list1.append({'mylog': [1, 2, 3, 4], 'list1': [1, 2, 3, 4]}) |
|
bleu_metric: 11.110969989860408 |
|
---------- |
|
NL: append a tuple of elements from list `a` with indexes '[0][0] [0][2]' to list `b` |
|
ref: b.append((a[0][0], a[0][2])) |
|
Output: [(i, j) for i, j in zip(a, b)] |
|
bleu_metric: 9.575085238714179 |
|
---------- |
|
NL: initialize `secret_key` in flask config with `your_secret_string ` |
|
ref: app.config['SECRET_KEY'] = 'Your_secret_string' |
|
Output: {'SECURITY_KEY': 'your_SECURITY_string'} |
|
bleu_metric: 12.498879161997976 |
|
---------- |
|
NL: unpack a series of tuples in pandas into a dataframe with column names 'out-1' and 'out-2' |
|
ref: pd.DataFrame(out.tolist(), columns=['out-1', 'out-2'], index=out.index) |
|
Output: pd.DataFrame(df.columns,▁columns=['out-1', 'out-2']) |
|
bleu_metric: 55.07111790934335 |
|
---------- |
|
NL: find the index of an element 'msft' in a list `stocks_list` |
|
ref: [x for x in range(len(stocks_list)) if stocks_list[x] == 'MSFT'] |
|
Output: [i for i, v in enumerate(stocks_list.items())▁if v =='msft')▁if v |
|
bleu_metric: 13.33045094117443 |
|
---------- |
|
NL: rotate the xtick labels of matplotlib plot `ax` by `45` degrees to make long labels readable |
|
ref: ax.set_xticklabels(labels, rotation=45) |
|
Output: ax.set_xticklabels(ax.xaxis.get_majorticklabels(45)) |
|
bleu_metric: 30.620490882364876 |
|
---------- |
|
NL: remove symbols from a string `s` |
|
ref: re.sub('[^\\w]', ' ', s) |
|
Output: re.sub('(?<=[a-z])(?=[A-Z])', '', s) |
|
bleu_metric: 35.3639760061202 |
|
---------- |
|
NL: get the current directory of a script |
|
ref: os.path.basename(os.path.dirname(os.path.realpath(__file__))) |
|
Output: os.path.dirname(os.path.realpath(__file__)) |
|
bleu_metric: 63.37967287681905 |
|
---------- |
|
NL: find octal characters matches from a string `str` using regex |
|
ref: print(re.findall("'\\\\[0-7]{1,3}'", str)) |
|
Output: re.findall(pattern,▁string).findall(pattern, re.UNICODE) |
|
bleu_metric: 13.635660702165275 |
|
---------- |
|
NL: split string `input` based on occurrences of regex pattern '[ ](?=[a-z]+\\b)' |
|
ref: re.split('[ ](?=[A-Z]+\\b)', input) |
|
Output: input.split('[ ](?=[a-z]+\\b)') |
|
bleu_metric: 64.58552885189877 |
|
---------- |
|
NL: split string `input` at every space followed by an upper-case letter |
|
ref: re.split('[ ](?=[A-Z])', input) |
|
Output: input.split('.')[1] |
|
bleu_metric: 16.636072310752336 |
|
---------- |
|
NL: send multipart encoded file `files` to url `url` with headers `headers` and metadata `data` |
|
ref: r = requests.post(url, files=files, headers=headers, data=data) |
|
Output: ▁urllib.request.urlopen(url,▁headers=headers,▁headers=data) |
|
bleu_metric: 33.09468095382839 |
|
---------- |
|
NL: write bytes `bytes_` to a file `filename` in python 3 |
|
ref: open('filename', 'wb').write(bytes_) |
|
Output: open('filename', 'rb').write(bytes(bytes_)) |
|
bleu_metric: 60.59827460443867 |
|
---------- |
|
NL: get a list from a list `lst` with values mapped into a dictionary `dct` |
|
ref: [dct[k] for k in lst] |
|
Output: ▁list(itertools.chain.from_iterable(lst)) |
|
bleu_metric: 10.511846841633776 |
|
---------- |
|
NL: find duplicate names in column 'name' of the dataframe `x` |
|
ref: x.set_index('name').index.get_duplicates() |
|
Output: df.groupby('name')['x'].cumsum() |
|
bleu_metric: 34.11488281065382 |
|
---------- |
|
NL: truncate float 1.923328437452 to 3 decimal places |
|
ref: round(1.923328437452, 3) |
|
Output: ▁float('{0:.2f}'.format(env)) |
|
bleu_metric: 9.629943614188138 |
|
---------- |
|
NL: sort list `li` in descending order based on the date value in second element of each list in list `li` |
|
ref: sorted(li, key=lambda x: datetime.strptime(x[1], '%d/%m/%Y'), reverse=True) |
|
Output: ▁sorted(li,▁key=lambda x: (x[1], x[0])) |
|
bleu_metric: 31.993666822129963 |
|
---------- |
|
NL: place the radial ticks in plot `ax` at 135 degrees |
|
ref: ax.set_rlabel_position(135) |
|
Output: ax.set_visible(False) |
|
bleu_metric: 32.17294420803808 |
|
---------- |
|
NL: check if path `my_path` is an absolute path |
|
ref: os.path.isabs(my_path) |
|
Output: ▁print(os.path.abspath(__file__)) |
|
bleu_metric: 29.256127307315065 |
|
---------- |
|
NL: get number of keys in dictionary `yourdict` |
|
ref: len(list(yourdict.keys())) |
|
Output: len(yourdict.keys()) |
|
bleu_metric: 63.70964381207871 |
|
---------- |
|
NL: count the number of keys in dictionary `yourdictfile` |
|
ref: len(set(open(yourdictfile).read().split())) |
|
Output: len(yourdictfile.values()) |
|
bleu_metric: 13.938681520780069 |
|
---------- |
|
NL: pandas dataframe get first row of each group by 'id' |
|
ref: df.groupby('id').first() |
|
Output: df['id'] = df['id'].apply(lambda x: x.tolist()) |
|
bleu_metric: 12.991916506579942 |
|
---------- |
|
NL: split a list in first column into multiple columns keeping other columns as well in pandas data frame |
|
ref: pd.concat([df[0].apply(pd.Series), df[1]], axis=1) |
|
Output: df['A'].str.split(',', 1)['B'].str.split(',') |
|
bleu_metric: 9.64535051675695 |
|
---------- |
|
NL: extract attributes 'src="js/([^"]*\\bjquery\\b[^"]*)"' from string `data` |
|
ref: re.findall('src="js/([^"]*\\bjquery\\b[^"]*)"', data) |
|
Output: re.findall('\\bjquery\\b[^"]*)', data) |
|
bleu_metric: 51.296752626995115 |
|
---------- |
|
NL: sum integers contained in strings in list `['', '3.4', '', '', '1.0']` |
|
ref: sum(int(float(item)) for item in [_f for _f in ['', '3.4', '', '', '1.0'] if _f]) |
|
Output: ▁sum(map(int, ['', '3.4', '', '1.0'])) |
|
bleu_metric: 45.29937105346175 |
|
---------- |
|
NL: call a subprocess with arguments `c:\\program files\\vmware\\vmware server\\vmware-cmd.bat` that may contain spaces |
|
ref: subprocess.Popen(['c:\\Program Files\\VMware\\VMware Server\\vmware-cmd.bat']) |
|
Output: subprocess.call(['c:\\programfile\\vmware\\vmware-server\\ |
|
bleu_metric: 33.78386474477107 |
|
---------- |
|
NL: reverse a priority queue `q` in python without using classes |
|
ref: q.put((-n, n)) |
|
Output: time.sleep(1) |
|
bleu_metric: 13.597602315271134 |
|
---------- |
|
NL: make a barplot of data in column `group` of dataframe `df` colour-coded according to list `color` |
|
ref: df['group'].plot(kind='bar', color=['r', 'g', 'b', 'r', 'g', 'b', 'r']) |
|
Output: plt.show() |
|
bleu_metric: 0.030120959708599737 |
|
---------- |
|
NL: find all matches of regex pattern '([a-fa-f\\d]{32})' in string `data` |
|
ref: re.findall('([a-fA-F\\d]{32})', data) |
|
Output: re.findall('([a-fa-f\\d]{32})', data) |
|
bleu_metric: 80.59468738950976 |
|
---------- |
|
NL: get the length of list `my_list` |
|
ref: len(my_list) |
|
Output: len(my_list) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: getting the length of array `l` |
|
ref: len(l) |
|
Output: len(l) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: getting the length of array `s` |
|
ref: len(s) |
|
Output: len(s) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: getting the length of `my_tuple` |
|
ref: len(my_tuple) |
|
Output: len(my_tuple) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: getting the length of `my_string` |
|
ref: len(my_string) |
|
Output: len(my_string) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: remove escape character from string "\\a" |
|
ref: """\\a""".decode('string_escape') |
|
Output: """\\a""".decode('string_escape') |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: replace each 'a' with 'b' and each 'b' with 'a' in the string 'obama' in a single pass. |
|
ref: """obama""".replace('a', '%temp%').replace('b', 'a').replace('%temp%', 'b') |
|
Output: """""".join(['a', 'b', 'a']) |
|
bleu_metric: 28.029141246256657 |
|
---------- |
|
NL: remove directory tree '/folder_name' |
|
ref: shutil.rmtree('/folder_name') |
|
Output: os.path.dirname('/folder_name') |
|
bleu_metric: 57.608442016038964 |
|
---------- |
|
NL: create a new column `weekday` in pandas data frame `data` based on the values in column `my_dt` |
|
ref: data['weekday'] = data['my_dt'].apply(lambda x: x.weekday()) |
|
Output: data.apply(lambda x: x['weekday'].str.contains(x['my_dt' |
|
bleu_metric: 51.68669917653163 |
|
---------- |
|
NL: reverse sort counter `x` by values |
|
ref: sorted(x, key=x.get, reverse=True) |
|
Output: ▁sorted(x, reverse=True) |
|
bleu_metric: 49.88250584787245 |
|
---------- |
|
NL: reverse sort counter `x` by value |
|
ref: sorted(list(x.items()), key=lambda pair: pair[1], reverse=True) |
|
Output: ▁sorted(x,▁key=itemgetter(1), reverse=True) |
|
bleu_metric: 28.177860103739523 |
|
---------- |
|
NL: append a numpy array 'b' to a numpy array 'a' |
|
ref: np.vstack((a, b)) |
|
Output: ▁numpy.append(a, b) |
|
bleu_metric: 46.92470064105599 |
|
---------- |
|
NL: numpy concatenate two arrays `a` and `b` along the first axis |
|
ref: print(concatenate((a, b), axis=0)) |
|
Output: np.concatenate((a, b),▁axis=0) |
|
bleu_metric: 65.60930058975354 |
|
---------- |
|
NL: numpy concatenate two arrays `a` and `b` along the second axis |
|
ref: print(concatenate((a, b), axis=1)) |
|
Output: np.concatenate((a, b),▁axis=0) |
|
bleu_metric: 55.60336961016132 |
|
---------- |
|
NL: numpy concatenate two arrays `a` and `b` along the first axis |
|
ref: c = np.r_[(a[None, :], b[None, :])] |
|
Output: np.concatenate((a, b),▁axis=0) |
|
bleu_metric: 10.756284573187752 |
|
---------- |
|
NL: numpy concatenate two arrays `a` and `b` along the first axis |
|
ref: np.array((a, b)) |
|
Output: np.concatenate((a, b),▁axis=0) |
|
bleu_metric: 41.896825433302276 |
|
---------- |
|
NL: fetch address information for host 'google.com' ion port 80 |
|
ref: print(socket.getaddrinfo('google.com', 80)) |
|
Output: db.request.urlretrieve('google.com') |
|
bleu_metric: 39.00756812161481 |
|
---------- |
|
NL: add a column 'day' with value 'sat' to dataframe `df` |
|
ref: df.xs('sat', level='day', drop_level=False) |
|
Output: df['Date'] = df['Date'].apply(lambda x: x.to_date( |
|
bleu_metric: 7.575731225158963 |
|
---------- |
|
NL: return a 401 unauthorized in django |
|
ref: return HttpResponse('Unauthorized', status=401) |
|
Output: MyModel.objects.filter(author__id=1) |
|
bleu_metric: 14.294845713017917 |
|
---------- |
|
NL: flask set folder 'wherever' as the default template folder |
|
ref: Flask(__name__, template_folder='wherever') |
|
Output: ▁app.run(debug=True) |
|
bleu_metric: 17.03318603763928 |
|
---------- |
|
NL: how do i insert into t1 (select * from t2) in sqlalchemy? |
|
ref: session.execute('INSERT INTO t1 (SELECT * FROM t2)') |
|
Output: ▁session.commit() |
|
bleu_metric: 9.01760872773444 |
|
---------- |
|
NL: sort a list of lists 'c2' such that third row comes first |
|
ref: c2.sort(key=lambda row: row[2]) |
|
Output: c2.sort(key=lambda x: x[0]) |
|
bleu_metric: 55.33409598501608 |
|
---------- |
|
NL: sorting a list of lists in python |
|
ref: c2.sort(key=lambda row: (row[2], row[1], row[0])) |
|
Output: ▁sorted(list_of_lists,▁key=lambda x: x[1]) |
|
bleu_metric: 13.837388732992803 |
|
---------- |
|
NL: sorting a list of lists in python |
|
ref: c2.sort(key=lambda row: (row[2], row[1])) |
|
Output: ▁sorted(list_of_lists,▁key=lambda x: x[1]) |
|
bleu_metric: 23.34445185729352 |
|
---------- |
|
NL: set font `arial` to display non-ascii characters in matplotlib |
|
ref: matplotlib.rc('font', **{'sans-serif': 'Arial', 'family': 'sans-serif'}) |
|
Output: plt.show() |
|
bleu_metric: 0.3669484097406089 |
|
---------- |
|
NL: convert datetime column 'date' of pandas dataframe 'df' to ordinal |
|
ref: df['date'].apply(lambda x: x.toordinal()) |
|
Output: df['date'] = df['date'].dt.to_datetime(df['date'] |
|
bleu_metric: 28.326302347195153 |
|
---------- |
|
NL: get html source of selenium webelement `element` |
|
ref: element.get_attribute('innerHTML') |
|
Output: browser.find_element_by_xpath("//a[@id='a']//a[ |
|
bleu_metric: 9.092617426809149 |
|
---------- |
|
NL: get the integer location of a key `bob` in a pandas data frame |
|
ref: df.index.get_loc('bob') |
|
Output: df.loc[df['bob'].isin()] |
|
bleu_metric: 19.345299022826186 |
|
---------- |
|
NL: open a 'gnome' terminal from python script and run 'sudo apt-get update' command. |
|
ref: os.system('gnome-terminal -e \'bash -c "sudo apt-get update; exec bash"\'') |
|
Output: os.system('sudo apt-get update') |
|
bleu_metric: 21.20024487612511 |
|
---------- |
|
NL: add an item with key 'third_key' and value 1 to an dictionary `my_dict` |
|
ref: my_dict.update({'third_key': 1}) |
|
Output: ▁dict((k, v) for k, v in my_dict.items()▁if v[0] == 1) |
|
bleu_metric: 7.261813302549417 |
|
---------- |
|
NL: declare an array |
|
ref: my_list = [] |
|
Output: intarray = [] |
|
bleu_metric: 75.98356856515926 |
|
---------- |
|
NL: insert item `12` to a list `my_list` |
|
ref: my_list.append(12) |
|
Output: my_list.insert(0, 12) |
|
bleu_metric: 32.46679154750989 |
|
---------- |
|
NL: add an entry 'wuggah' at the beginning of list `mylist` |
|
ref: myList.insert(0, 'wuggah') |
|
Output: ▁list(['wuggah', 'wuggah']) |
|
bleu_metric: 27.22589423069702 |
|
---------- |
|
NL: convert a hex-string representation to actual bytes |
|
ref: """\\xF3\\xBE\\x80\\x80""".replace('\\x', '').decode('hex') |
|
Output: ▁struct.unpack('<I',▁struct.pack('>I', 16))[0] |
|
bleu_metric: 6.258020733367848 |
|
---------- |
|
NL: select the last column of dataframe `df` |
|
ref: df[df.columns[-1]] |
|
Output: df.iloc[:, (-1)] |
|
bleu_metric: 20.78060434846712 |
|
---------- |
|
NL: get the first value from dataframe `df` where column 'letters' is equal to 'c' |
|
ref: df.loc[df['Letters'] == 'C', 'Letters'].values[0] |
|
Output: df['letters'].str.contains('c') |
|
bleu_metric: 12.409088593346615 |
|
---------- |
|
NL: converting two lists `[1, 2, 3]` and `[4, 5, 6]` into a matrix |
|
ref: np.column_stack(([1, 2, 3], [4, 5, 6])) |
|
Output: ▁matrix([[1, 2, 3], [4, 5, 6])) |
|
bleu_metric: 79.78897056262763 |
|
---------- |
|
NL: get the type of `i` |
|
ref: type(i) |
|
Output: type(i) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: determine the type of variable `v` |
|
ref: type(v) |
|
Output: type(v) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: determine the type of variable `v` |
|
ref: type(v) |
|
Output: type(v) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: determine the type of variable `v` |
|
ref: type(v) |
|
Output: type(v) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: determine the type of variable `v` |
|
ref: type(v) |
|
Output: type(v) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: get the type of variable `variable_name` |
|
ref: print(type(variable_name)) |
|
Output: ▁globals()['factor'] |
|
bleu_metric: 13.54599427337814 |
|
---------- |
|
NL: get the 5th item of a generator |
|
ref: next(itertools.islice(range(10), 5, 5 + 1)) |
|
Output: ▁list(itertools.islice(it, 5)) |
|
bleu_metric: 31.347458595184502 |
|
---------- |
|
NL: print a string `word` with string format |
|
ref: print('"{}"'.format(word)) |
|
Output: ▁print(' '.join(word)) |
|
bleu_metric: 49.97150634074441 |
|
---------- |
|
NL: join a list of strings `list` using a space ' ' |
|
ref: """ """.join(list) |
|
Output: """ """.join(map(str,▁list)) |
|
bleu_metric: 56.79161104357995 |
|
---------- |
|
NL: create list `y` containing two empty lists |
|
ref: y = [[] for n in range(2)] |
|
Output: y = [[] for i in range(2)] |
|
bleu_metric: 80.03203203844998 |
|
---------- |
|
NL: read a file 'c:/name/mydocuments/numbers' into a list `data` |
|
ref: data = [line.strip() for line in open('C:/name/MyDocuments/numbers', 'r')] |
|
Output: data = [line.read() for▁line in open('C:/name/mydocuments/numbers')] |
|
bleu_metric: 56.78312391912661 |
|
---------- |
|
NL: delete all occurrences of character 'i' in string 'it is icy' |
|
ref: """""".join([char for char in 'it is icy' if char != 'i']) |
|
Output: re.sub('i', 'it is icy') |
|
bleu_metric: 15.99248714366856 |
|
---------- |
|
NL: delete all instances of a character 'i' in a string 'it is icy' |
|
ref: re.sub('i', '', 'it is icy') |
|
Output: re.sub('i', '', 'it is icy') |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: delete all characters "i" in string "it is icy" |
|
ref: """it is icy""".replace('i', '') |
|
Output: """it is icy""".replace('i', '') |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: how to delete all instances of a character in a string in python? |
|
ref: """""".join([char for char in 'it is icy' if char != 'i']) |
|
Output: re.sub('[^a-zA-Z]*', '', text) |
|
bleu_metric: 7.866954533441649 |
|
---------- |
|
NL: drop rows of pandas dataframe `df` having nan in column at index "1" |
|
ref: df.dropna(subset=[1]) |
|
Output: df.dropna(df.columns,▁axis=1) |
|
bleu_metric: 30.130404892785684 |
|
---------- |
|
NL: get elements from list `mylist`, that have a field `n` value 30 |
|
ref: [x for x in myList if x.n == 30] |
|
Output: [i for i, v in enumerate(mylist)▁if v == n] |
|
bleu_metric: 13.229527092256335 |
|
---------- |
|
NL: converting list of strings `intstringlist` to list of integer `nums` |
|
ref: nums = [int(x) for x in intstringlist] |
|
Output: [int(x) for x in intstringlist] |
|
bleu_metric: 83.9234989944319 |
|
---------- |
|
NL: convert list of string numbers into list of integers |
|
ref: map(int, eval(input('Enter the unfriendly numbers: '))) |
|
Output: [int(x) for x in lst] |
|
bleu_metric: 7.290792403968443 |
|
---------- |
|
NL: print "." without newline |
|
ref: sys.stdout.write('.') |
|
Output: ▁sys.stdout.write('.') |
|
bleu_metric: 83.85766789076257 |
|
---------- |
|
NL: round off the float that is the product of `2.52 * 100` and convert it to an int |
|
ref: int(round(2.51 * 100)) |
|
Output: int(round(1.0 *▁100)) |
|
bleu_metric: 46.82568791024402 |
|
---------- |
|
NL: find all files in directory "/mydir" with extension ".txt" |
|
ref: for file in glob.glob('*.txt'): |
|
pass |
|
Output: for▁file in os.listdir('/mydir'):▁if▁file.endswith('.txt'):▁pass |
|
bleu_metric: 20.1857735807738 |
|
---------- |
|
NL: find all files in directory "/mydir" with extension ".txt" |
|
ref: for file in os.listdir('/mydir'): |
|
if file.endswith('.txt'): |
|
pass |
|
Output: for▁file in os.listdir('/mydir'):▁if▁file.endswith('.txt'):▁pass |
|
bleu_metric: 71.95956498085113 |
|
---------- |
|
NL: find all files in directory "/mydir" with extension ".txt" |
|
ref: for (root, dirs, files) in os.walk('/mydir'): |
|
for file in files: |
|
if file.endswith('.txt'): |
|
pass |
|
Output: for▁file in os.listdir('/mydir'):▁if▁file.endswith('.txt'):▁pass |
|
bleu_metric: 47.1684455439837 |
|
---------- |
|
NL: plot dataframe `df` without a legend |
|
ref: df.plot(legend=False) |
|
Output: plt.show() |
|
bleu_metric: 20.034704329441453 |
|
---------- |
|
NL: loop through the ip address range "192.168.x.x" |
|
ref: for i in range(256): |
|
for j in range(256): |
|
ip = ('192.168.%d.%d' % (i, j)) |
|
print(ip) |
|
Output: for i in range('192.168.x.x'):▁pass |
|
bleu_metric: 14.238794877552813 |
|
---------- |
|
NL: loop through the ip address range "192.168.x.x" |
|
ref: for (i, j) in product(list(range(256)), list(range(256))): |
|
pass |
|
Output: for i in range('192.168.x.x'):▁pass |
|
bleu_metric: 7.916713848850043 |
|
---------- |
|
NL: loop through the ip address range "192.168.x.x" |
|
ref: generator = iter_iprange('192.168.1.1', '192.168.255.255', step=1) |
|
Output: for i in range('192.168.x.x'):▁pass |
|
bleu_metric: 18.291291695991816 |
|
---------- |
|
NL: sum the corresponding decimal values for binary values of each boolean element in list `x` |
|
ref: sum(1 << i for i, b in enumerate(x) if b) |
|
Output: ▁sum([int(x) for x in▁list(bool(e))]) |
|
bleu_metric: 14.071964689317513 |
|
---------- |
|
NL: write multiple strings `line1`, `line2` and `line3` in one line in a file `target` |
|
ref: target.write('%r\n%r\n%r\n' % (line1, line2, line3)) |
|
Output: f.write(line1,▁line2 +▁line3.split(',')) |
|
bleu_metric: 16.116608915070366 |
|
---------- |
|
NL: convert list of lists `data` into a flat list |
|
ref: [y for x in data for y in (x if isinstance(x, list) else [x])] |
|
Output: [j for i in data for j in i] |
|
bleu_metric: 9.344244386017191 |
|
---------- |
|
NL: print new line character as `\n` in a string `foo\nbar` |
|
ref: print('foo\nbar'.encode('string_escape')) |
|
Output: """foo\nbar""".replace('\n') |
|
bleu_metric: 32.49189152106538 |
|
---------- |
|
NL: remove last comma character ',' in string `s` |
|
ref: """""".join(s.rsplit(',', 1)) |
|
Output: s = s.replace(',', '') |
|
bleu_metric: 24.4545047029932 |
|
---------- |
|
NL: calculate the mean of each element in array `x` with the element previous to it |
|
ref: (x[1:] + x[:-1]) / 2 |
|
Output: np.mean(x) |
|
bleu_metric: 6.656592803413297 |
|
---------- |
|
NL: get an array of the mean of each two consecutive values in numpy array `x` |
|
ref: x[:-1] + (x[1:] - x[:-1]) / 2 |
|
Output: ▁numpy.array([[1, 2], [2, 4]]) |
|
bleu_metric: 10.64536882179483 |
|
---------- |
|
NL: load data containing `utf-8` from file `new.txt` into numpy array `arr` |
|
ref: arr = numpy.fromiter(codecs.open('new.txt', encoding='utf-8'), dtype='<U2') |
|
Output: arr = np.loadtxt(new.txt) |
|
bleu_metric: 4.099273792559235 |
|
---------- |
|
NL: reverse sort list of dicts `l` by value for key `time` |
|
ref: l = sorted(l, key=itemgetter('time'), reverse=True) |
|
Output: ▁sorted(l,▁key=lambda t: (t[0], t[0])) |
|
bleu_metric: 18.627639656696825 |
|
---------- |
|
NL: sort a list of dictionary `l` based on key `time` in descending order |
|
ref: l = sorted(l, key=lambda a: a['time'], reverse=True) |
|
Output: ▁sorted(l,▁key=lambda x: (-int(x[1], x[0]), reverse=True)) |
|
bleu_metric: 26.765226160005685 |
|
---------- |
|
NL: get rows of dataframe `df` that match regex '(hel|just)' |
|
ref: df.loc[df[0].str.contains('(Hel|Just)')] |
|
Output: df.groupby(['(heljust)']).groupby(df.index.get_level_values |
|
bleu_metric: 12.09439045789828 |
|
---------- |
|
NL: find the string in `your_string` between two special characters "[" and "]" |
|
ref: re.search('\\[(.*)\\]', your_string).group(1) |
|
Output: """""".join(your_string.split('[" and "]')) |
|
bleu_metric: 10.973111462459018 |
|
---------- |
|
NL: how to create a list of date string in 'yyyymmdd' format with python pandas? |
|
ref: [d.strftime('%Y%m%d') for d in pandas.date_range('20130226', '20130302')] |
|
Output: df['Date'] = pd.to_datetime(df['Date']) |
|
bleu_metric: 4.975343379350494 |
|
---------- |
|
NL: count number of times string 'brown' occurred in string 'the big brown fox is brown' |
|
ref: """The big brown fox is brown""".count('brown') |
|
Output: """""".join( len(s) for s in s.split(',')) |
|
bleu_metric: 25.567957494892184 |
|
---------- |
|
NL: decode json string `request.body` to python dict |
|
ref: json.loads(request.body) |
|
Output: json.loads(request.body) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: download the file from url `url` and save it under file `file_name` |
|
ref: urllib.request.urlretrieve(url, file_name) |
|
Output: ▁urllib.request.urlretrieve('http://stackoverflow.com/',▁filename) |
|
bleu_metric: 27.219913803267488 |
|
---------- |
|
NL: split string `text` by space |
|
ref: text.split() |
|
Output: text.split(' ', 1) |
|
bleu_metric: 40.3527863746399 |
|
---------- |
|
NL: split string `text` by "," |
|
ref: text.split(',') |
|
Output: text.split(',') |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: split string `line` into a list by whitespace |
|
ref: line.split() |
|
Output: ▁line = [line.split() for▁line in▁line.split()] |
|
bleu_metric: 21.08445456905127 |
|
---------- |
|
NL: replace dot characters '.' associated with ascii letters in list `s` with space ' ' |
|
ref: [re.sub('(?<!\\d)\\.(?!\\d)', ' ', i) for i in s] |
|
Output: re.sub('.{2,}', '.', s) |
|
bleu_metric: 12.97619575634719 |
|
---------- |
|
NL: sort list `list_of_strings` based on second index of each string `s` |
|
ref: sorted(list_of_strings, key=lambda s: s.split(',')[1]) |
|
Output: ▁sorted(list_of_strings,▁key=lambda x: x[1]) |
|
bleu_metric: 36.27963251722101 |
|
---------- |
|
NL: call multiple bash function 'vasp' and 'tee tee_output' using '|' |
|
ref: subprocess.check_call('vasp | tee tee_output', shell=True) |
|
Output: subprocess.call(['vasp', 'teeTe_output'],▁shell=True) |
|
bleu_metric: 29.579676781865178 |
|
---------- |
|
NL: eliminate all strings from list `lst` |
|
ref: [element for element in lst if isinstance(element, int)] |
|
Output: [x for x in lst▁if x is not▁None] |
|
bleu_metric: 15.844501337268929 |
|
---------- |
|
NL: get all the elements except strings from the list 'lst'. |
|
ref: [element for element in lst if not isinstance(element, str)] |
|
Output: [i for i, x in enumerate(lst)▁if x is not▁None] |
|
bleu_metric: 12.208428349950823 |
|
---------- |
|
NL: sort a list of dictionaries `list_to_be_sorted` by the value of the dictionary key `name` |
|
ref: newlist = sorted(list_to_be_sorted, key=lambda k: k['name']) |
|
Output: ▁sorted(list_to_be_sorted,▁key=lambda x: x['name']) |
|
bleu_metric: 51.83282721440023 |
|
---------- |
|
NL: sort a list of dictionaries `l` by values in key `name` in descending order |
|
ref: newlist = sorted(l, key=itemgetter('name'), reverse=True) |
|
Output: ▁sorted(l,▁key=lambda x: x[name]['name'], reverse=True) |
|
bleu_metric: 35.357497307303696 |
|
---------- |
|
NL: how do i sort a list of dictionaries by values of the dictionary in python? |
|
ref: list_of_dicts.sort(key=operator.itemgetter('name')) |
|
Output: ▁sorted(lst,▁key=lambda d: d['name'], reverse=True) |
|
bleu_metric: 13.121551386461338 |
|
---------- |
|
NL: how do i sort a list of dictionaries by values of the dictionary in python? |
|
ref: list_of_dicts.sort(key=operator.itemgetter('age')) |
|
Output: ▁sorted(lst,▁key=lambda d: d['name'], reverse=True) |
|
bleu_metric: 9.429254736980933 |
|
---------- |
|
NL: how to sort a dataframe by the ocurrences in a column in python (pandas) |
|
ref: df.groupby('prots').sum().sort('scores', ascending=False) |
|
Output: df.sort_values(['probe', 'probe'],▁ascending=[True, False |
|
bleu_metric: 11.147098723841475 |
|
---------- |
|
NL: join together with "," elements inside a list indexed with 'category' within a dictionary `trans` |
|
ref: """,""".join(trans['category']) |
|
Output: [(k, v) for k, v in zip(trans.items())] |
|
bleu_metric: 9.849349468888722 |
|
---------- |
|
NL: concatenate array of strings `['a', 'b', 'c', 'd']` into a string |
|
ref: """""".join(['A', 'B', 'C', 'D']) |
|
Output: """""".join(['a', 'b', 'c', 'd']) |
|
bleu_metric: 61.82527625446008 |
|
---------- |
|
NL: get json data from restful service 'url' |
|
ref: json.load(urllib.request.urlopen('url')) |
|
Output: ▁print(json.dumps(data)) |
|
bleu_metric: 17.707238844430016 |
|
---------- |
|
NL: remove all strings from a list a strings `sents` where the values starts with `@$\t` or `#` |
|
ref: [x for x in sents if not x.startswith('@$\t') and not x.startswith('#')] |
|
Output: """""".join([c for c in s▁if c.isdigit()]) |
|
bleu_metric: 7.633640986761055 |
|
---------- |
|
NL: django filter by hour |
|
ref: Entry.objects.filter(pub_date__contains='08:00') |
|
Output: ▁User.objects.filter(date__contains='Europe/Amsterdam') |
|
bleu_metric: 36.6151076865785 |
|
---------- |
|
NL: sort a list of dictionary `list` first by key `points` and then by `time` |
|
ref: list.sort(key=lambda item: (item['points'], item['time'])) |
|
Output: ▁sorted(list,▁key=itemgetter(1), reverse=True) |
|
bleu_metric: 8.768005785989223 |
|
---------- |
|
NL: convert datetime object `(1970, 1, 1)` to seconds |
|
ref: (t - datetime.datetime(1970, 1, 1)).total_seconds() |
|
Output: ▁datetime.datetime.strptime('1970, 1, 1)', '%Y-%m-%d %H:% |
|
bleu_metric: 24.03479325641683 |
|
---------- |
|
NL: insert `_suff` before the file extension in `long.file.name.jpg` or replace `_a` with `suff` if it precedes the extension. |
|
ref: re.sub('(\\_a)?\\.([^\\.]*)$', '_suff.\\2', 'long.file.name.jpg') |
|
Output: ▁print(os.path.insert(0, 'ng.file.name.jpg','suff','suff')) |
|
bleu_metric: 21.88455177736455 |
|
---------- |
|
NL: reload a module `module` |
|
ref: import imp |
|
imp.reload(module) |
|
Output: module.reload(module) |
|
bleu_metric: 63.1914561891573 |
|
---------- |
|
NL: convert integer `number` into an unassigned integer |
|
ref: struct.unpack('H', struct.pack('h', number)) |
|
Output: int('0', '0', '0', '0', '0', '0', '0', |
|
bleu_metric: 8.036517486170723 |
|
---------- |
|
NL: convert int values in list `numlist` to float |
|
ref: numlist = [float(x) for x in numlist] |
|
Output: ▁struct.unpack('f',▁struct.pack('f', numlist))[0] |
|
bleu_metric: 7.592939129822969 |
|
---------- |
|
NL: write dataframe `df`, excluding index, to a csv file |
|
ref: df.to_csv(filename, index=False) |
|
Output: df.to_csv('test.csv', index=False) |
|
bleu_metric: 53.070741098514354 |
|
---------- |
|
NL: convert a urllib unquoted string `unescaped` to a json data `json_data` |
|
ref: json_data = json.loads(unescaped) |
|
Output: json_data = json.loads(unescaped) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: create a list containing all ascii characters as its elements |
|
ref: [chr(i) for i in range(127)] |
|
Output: [''.join(chr(ord(c)) for c in my_list) for c in my_list] |
|
bleu_metric: 11.371681934875246 |
|
---------- |
|
NL: write `newfilebytes` to a binary file `newfile` |
|
ref: newFile.write(struct.pack('5B', *newFileBytes)) |
|
Output: open('newfilebytes', 'rb').write('\n'.join(newfile)) |
|
bleu_metric: 16.973628531343277 |
|
---------- |
|
NL: python regex - check for a capital letter with a following lowercase in string `string` |
|
ref: re.sub('^[A-Z0-9]*(?![a-z])', '', string) |
|
Output: re.findall('[^a-zA-Z]*', s) |
|
bleu_metric: 12.573478351903535 |
|
---------- |
|
NL: get the last key of dictionary `dict` |
|
ref: list(dict.keys())[-1] |
|
Output: ▁dict((k, v) for k, v in▁list(dict.items())) |
|
bleu_metric: 18.62763965669682 |
|
---------- |
|
NL: write line "hi there" to file `f` |
|
ref: print('hi there', file=f) |
|
Output: f.write('hi there', 'w').write('\n'.join(f)) |
|
bleu_metric: 23.887527917609027 |
|
---------- |
|
NL: write line "hi there" to file `myfile` |
|
ref: f = open('myfile', 'w') |
|
f.write('hi there\n') |
|
f.close() |
|
Output: ▁file.write('hi there', myfile) |
|
bleu_metric: 16.852867937533343 |
|
---------- |
|
NL: write line "hello" to file `somefile.txt` |
|
ref: with open('somefile.txt', 'a') as the_file: |
|
the_file.write('Hello\n') |
|
Output: ▁somefile.txt('hello') |
|
bleu_metric: 7.979461412543687 |
|
---------- |
|
NL: convert unicode string `s` to ascii |
|
ref: s.encode('iso-8859-15') |
|
Output: s.decode('ascii', 'ignore') |
|
bleu_metric: 24.022110864391532 |
|
---------- |
|
NL: django get maximum value associated with field 'added' in model `authorizedemail` |
|
ref: AuthorizedEmail.objects.filter(group=group).order_by('-added')[0] |
|
Output: MyModel.objects.filter(id=id).order_by('-id')[0].max() |
|
bleu_metric: 46.71778989333441 |
|
---------- |
|
NL: find all numbers and dots from a string `text` using regex |
|
ref: re.findall('Test([0-9.]*[0-9]+)', text) |
|
Output: re.findall('\\d+', text) |
|
bleu_metric: 24.73344228394784 |
|
---------- |
|
NL: python regex to find all numbers and dots from 'text' |
|
ref: re.findall('Test([\\d.]*\\d+)', text) |
|
Output: re.findall('\\d+', 'text') |
|
bleu_metric: 30.390044397302297 |
|
---------- |
|
NL: execute script 'script.ps1' using 'powershell.exe' shell |
|
ref: os.system('powershell.exe', 'script.ps1') |
|
Output: subprocess.call(['powershil.exe','script.ps1']) |
|
bleu_metric: 51.84341074271374 |
|
---------- |
|
NL: sort a list of tuples `b` by third item in the tuple |
|
ref: b.sort(key=lambda x: x[1][2]) |
|
Output: b.sort(key=operator.itemgetter(1)) |
|
bleu_metric: 34.167397320874144 |
|
---------- |
|
NL: get a list of all keys in cassandra database `cf` with pycassa |
|
ref: list(cf.get_range().get_keys()) |
|
Output: ▁list(set(c) for c in cf.values()) |
|
bleu_metric: 25.543184713657475 |
|
---------- |
|
NL: create a datetime with the current date & time |
|
ref: datetime.datetime.now() |
|
Output: ▁datetime.datetime.now().date() |
|
bleu_metric: 52.66403878479265 |
|
---------- |
|
NL: get the index of an integer `1` from a list `lst` if the list also contains boolean items |
|
ref: next(i for i, x in enumerate(lst) if not isinstance(x, bool) and x == 1) |
|
Output: [i for i, e in enumerate(lst)▁if e == 1] |
|
bleu_metric: 29.140057528358216 |
|
---------- |
|
NL: subtract 13 from every number in a list `a` |
|
ref: a[:] = [(x - 13) for x in a] |
|
Output: [(13 * x) for x in a] |
|
bleu_metric: 43.25713189814218 |
|
---------- |
|
NL: choose a random file from the directory contents of the c drive, `c:\\` |
|
ref: random.choice(os.listdir('C:\\')) |
|
Output: ▁random.choice(directory) |
|
bleu_metric: 18.574094470546356 |
|
---------- |
|
NL: get the highest element in absolute value in a numpy matrix `x` |
|
ref: max(x.min(), x.max(), key=abs) |
|
Output: max(x,▁key=operator.itemgetter(1)) |
|
bleu_metric: 17.53528352255253 |
|
---------- |
|
NL: get all urls within text `s` |
|
ref: re.findall('"(http.*?)"', s, re.MULTILINE | re.DOTALL) |
|
Output: ▁urllib.request.urlopen('http://www.reporo.com/', s) |
|
bleu_metric: 13.234855057210563 |
|
---------- |
|
NL: match urls whose domain doesn't start with `t` from string `document` using regex |
|
ref: re.findall('http://[^t][^s"]+\\.html', document) |
|
Output: re.findall('(?<!\\d)\\.\\d+\\.\\d+) |
|
bleu_metric: 25.05523539251516 |
|
---------- |
|
NL: split a string `mystring` considering the spaces ' ' |
|
ref: mystring.replace(' ', '! !').split('!') |
|
Output: re.split(' ', mystring) |
|
bleu_metric: 22.198393592766198 |
|
---------- |
|
NL: open file `path` with mode 'r' |
|
ref: open(path, 'r') |
|
Output: os.path.join(path, 'r') |
|
bleu_metric: 59.56403592718089 |
|
---------- |
|
NL: sum elements at the same index in list `data` |
|
ref: [[sum(item) for item in zip(*items)] for items in zip(*data)] |
|
Output: ▁sum(item[0] for item in data) |
|
bleu_metric: 12.82189675234617 |
|
---------- |
|
NL: add a new axis to array `a` |
|
ref: a[:, (np.newaxis)] |
|
Output: a[:, (None)] + a[::-1] |
|
bleu_metric: 31.852775583797786 |
|
---------- |
|
NL: send a signal `signal.SIGUSR1` to the current process |
|
ref: os.kill(os.getpid(), signal.SIGUSR1) |
|
Output: time.send(signal.SIguSR1) |
|
bleu_metric: 13.763417606301584 |
|
---------- |
|
NL: decode a hex string '4a4b4c' to UTF-8. |
|
ref: bytes.fromhex('4a4b4c').decode('utf-8') |
|
Output: binascii.unhexlify('4A4B4c', 16) |
|
bleu_metric: 10.851293189170718 |
|
---------- |
|
NL: check if all elements in list `myList` are identical |
|
ref: all(x == myList[0] for x in myList) |
|
Output: all(isinstance(x, int) for x in myList) |
|
bleu_metric: 44.690223229515766 |
|
---------- |
|
NL: format number of spaces between strings `Python`, `:` and `Very Good` to be `20` |
|
ref: print('%*s : %*s' % (20, 'Python', 20, 'Very Good')) |
|
Output: """{:20}""".format(my_string, my_string) |
|
bleu_metric: 7.614627140286717 |
|
---------- |
|
NL: How to convert a string from CP-1251 to UTF-8? |
|
ref: d.decode('cp1251').encode('utf8') |
|
Output: cp1251.decode('utf8') |
|
bleu_metric: 39.664070074131374 |
|
---------- |
|
NL: get rid of None values in dictionary `kwargs` |
|
ref: res = {k: v for k, v in list(kwargs.items()) if v is not None} |
|
Output: ▁dict((kwargs.values()) for kwargs in▁list(kwargs.values() |
|
bleu_metric: 18.72259793437472 |
|
---------- |
|
NL: get rid of None values in dictionary `kwargs` |
|
ref: res = dict((k, v) for k, v in kwargs.items() if v is not None) |
|
Output: ▁dict((kwargs.values()) for kwargs in▁list(kwargs.values() |
|
bleu_metric: 14.345823302907393 |
|
---------- |
|
NL: capture final output of a chain of system commands `ps -ef | grep something | wc -l` |
|
ref: subprocess.check_output('ps -ef | grep something | wc -l', shell=True) |
|
Output: time.sleep(1) |
|
bleu_metric: 3.2586794879778176 |
|
---------- |
|
NL: concatenate a list of strings `['a', 'b', 'c']` |
|
ref: """""".join(['a', 'b', 'c']) |
|
Output: ['a', 'b', 'c'] |
|
bleu_metric: 45.715029516916914 |
|
---------- |
|
NL: find intersection data between series `s1` and series `s2` |
|
ref: pd.Series(list(set(s1).intersection(set(s2)))) |
|
Output: s1.intersection(s1, s2.intersection(s2)) |
|
bleu_metric: 24.554859518133163 |
|
---------- |
|
NL: sending http headers to `client` |
|
ref: client.send('HTTP/1.0 200 OK\r\n') |
|
Output: client.send('http://www.google.com') |
|
bleu_metric: 31.482474520658833 |
|
---------- |
|
NL: Format a datetime string `when` to extract date only |
|
ref: then = datetime.datetime.strptime(when, '%Y-%m-%d').date() |
|
Output: ▁datetime.datetime.strptime('January 11, 2010', '%Y-%m-%d').date() |
|
bleu_metric: 68.50564735741162 |
|
---------- |
|
NL: split a multi-line string `inputString` into separate strings |
|
ref: inputString.split('\n') |
|
Output: inputString.split(',') |
|
bleu_metric: 63.49135031073152 |
|
---------- |
|
NL: Split a multi-line string ` a \n b \r\n c ` by new line character `\n` |
|
ref: ' a \n b \r\n c '.split('\n') |
|
Output: re.split('\n\\n', '\n') |
|
bleu_metric: 49.03161996404015 |
|
---------- |
|
NL: concatenate elements of list `b` by a colon ":" |
|
ref: """:""".join(str(x) for x in b) |
|
Output: b = [(x + y) for x, y in zip(a, b)] |
|
bleu_metric: 15.821285888349262 |
|
---------- |
|
NL: get the first object from a queryset in django model `Entry` |
|
ref: Entry.objects.filter()[:1].get() |
|
Output: ▁Entry.objects.filter(id=1).order_by('id')[0] |
|
bleu_metric: 30.123786461877337 |
|
---------- |
|
NL: Calculate sum over all rows of 2D numpy array |
|
ref: a.sum(axis=1) |
|
Output: np.sum(np.sum(a,▁axis=0)) |
|
bleu_metric: 18.710158230410627 |
|
---------- |
|
NL: enable warnings using action 'always' |
|
ref: warnings.simplefilter('always') |
|
Output: ▁warnings.warn('always') |
|
bleu_metric: 57.06745777055999 |
|
---------- |
|
NL: concatenate items of list `l` with a space ' ' |
|
ref: print(' '.join(map(str, l))) |
|
Output: [' ','','',''.join(map(str, l)) for l in zip(l |
|
bleu_metric: 41.653935052504146 |
|
---------- |
|
NL: run script 'hello.py' with argument 'htmlfilename.htm' on terminal using python executable |
|
ref: subprocess.call(['python.exe', 'hello.py', 'htmlfilename.htm']) |
|
Output: subprocess.call(['hello.py', 'htmlfilename.htm']) |
|
bleu_metric: 69.67212594723009 |
|
---------- |
|
NL: How can I parse a time string containing milliseconds in it with python? |
|
ref: time.strptime('30/03/09 16:31:32.123', '%d/%m/%y %H:%M:%S.%f') |
|
Output: ▁datetime.datetime.strptime(s, '%Y-%m-%d %H:%M:%M:% |
|
bleu_metric: 23.516840244143285 |
|
---------- |
|
NL: convert a string `my_string` with dot and comma into a float number `my_float` |
|
ref: my_float = float(my_string.replace(',', '')) |
|
Output: ▁float(my_string.split(',')) |
|
bleu_metric: 45.67575584464341 |
|
---------- |
|
NL: convert a string `123,456.908` with dot and comma into a floating number |
|
ref: float('123,456.908'.replace(',', '')) |
|
Output: ▁struct.unpack('(?<=.)', '123,45s.908)[2:]) |
|
bleu_metric: 15.85266710543935 |
|
---------- |
|
NL: set pythonpath in python script. |
|
ref: sys.path.append('/path/to/whatever') |
|
Output: os.path.dirname(os.path.abspath(__file__)) |
|
bleu_metric: 18.295654224495205 |
|
---------- |
|
NL: split string 'Words, words, words.' using a regex '(\\W+)' |
|
ref: re.split('(\\W+)', 'Words, words, words.') |
|
Output: re.split('(\\W+)', 'Words,▁words,▁words.') |
|
bleu_metric: 79.75219547461046 |
|
---------- |
|
NL: open a file `Output.txt` in append mode |
|
ref: file = open('Output.txt', 'a') |
|
Output: exec(compile(open('Output.txt'))) |
|
bleu_metric: 49.862067651615035 |
|
---------- |
|
NL: download a file "http://www.example.com/songs/mp3.mp3" over HTTP and save to "mp3.mp3" |
|
ref: urllib.request.urlretrieve('http://www.example.com/songs/mp3.mp3', 'mp3.mp3') |
|
Output: ▁urllib.request.urlretrieve('http://www.example.com/songs/mp3.mp3', |
|
bleu_metric: 77.20315796580198 |
|
---------- |
|
NL: download a file `url` over HTTP and save to `file_name` |
|
ref: u = urllib.request.urlopen(url) |
|
Output: ▁urllib.request.urlretrieve('http://www.example.com/',▁filename) |
|
bleu_metric: 16.081986819293686 |
|
---------- |
|
NL: download a file 'http://www.example.com/' over HTTP |
|
ref: response = urllib.request.urlopen('http://www.example.com/') |
|
html = response.read() |
|
Output: ▁urllib.request.urlretrieve('http://www.example.com/') |
|
bleu_metric: 55.1505335495472 |
|
---------- |
|
NL: download a file `url` over HTTP |
|
ref: r = requests.get(url) |
|
Output: ▁urllib.request.urlretrieve(url) |
|
bleu_metric: 33.18077402843942 |
|
---------- |
|
NL: download a file `url` over HTTP and save to "10MB" |
|
ref: response = requests.get(url, stream=True) |
|
Output: ▁urllib.request.urlretrieve('http://www.example.com/',▁urllib.request.url |
|
bleu_metric: 5.911245883122321 |
|
---------- |
|
NL: argparse add argument with flag '--version' and version action of '%(prog)s 2.0' to parser `parser` |
|
ref: parser.add_argument('--version', action='version', version='%(prog)s 2.0') |
|
Output: parser.add_argument('---version', parser='%(prog)s▁2.0') |
|
bleu_metric: 63.536186277548154 |
|
---------- |
|
NL: remove key 'c' from dictionary `d` |
|
ref: {i: d[i] for i in d if i != 'c'} |
|
Output: d =▁dict((k, v) for k, v in d.items()▁if k▁!= 'c') |
|
bleu_metric: 17.787737198601235 |
|
---------- |
|
NL: Create new DataFrame object by merging columns "key" of dataframes `split_df` and `csv_df` and rename the columns from dataframes `split_df` and `csv_df` with suffix `_left` and `_right` respectively |
|
ref: pd.merge(split_df, csv_df, on=['key'], suffixes=('_left', '_right')) |
|
Output: df['key'] = df['key'].apply(lambda x: x.csv_df[ |
|
bleu_metric: 18.279747471290634 |
|
---------- |
|
NL: Split a string `s` by space with `4` splits |
|
ref: s.split(' ', 4) |
|
Output: s.split('4', 4) |
|
bleu_metric: 73.48889200874657 |
|
---------- |
|
NL: read keyboard-input |
|
ref: input('Enter your input:') |
|
Output: input() |
|
bleu_metric: 13.267398701010466 |
|
---------- |
|
NL: enable debug mode on Flask application `app` |
|
ref: app.run(debug=True) |
|
Output: ▁app.run(debug=True) |
|
bleu_metric: 80.70557274927982 |
|
---------- |
|
NL: python save list `mylist` to file object 'save.txt' |
|
ref: pickle.dump(mylist, open('save.txt', 'wb')) |
|
Output: mylist.save('save.txt') |
|
bleu_metric: 27.374248660963534 |
|
---------- |
|
NL: Multiply a matrix `P` with a 3d tensor `T` in scipy |
|
ref: scipy.tensordot(P, T, axes=[1, 1]).swapaxes(0, 1) |
|
Output: plt.show() |
|
bleu_metric: 1.644548677312421 |
|
---------- |
|
NL: Create 3d array of zeroes of size `(3,3,3)` |
|
ref: numpy.zeros((3, 3, 3)) |
|
Output: np.zeros((3, 3, 3)) |
|
bleu_metric: 91.93227152249185 |
|
---------- |
|
NL: cut off the last word of a sentence `content` |
|
ref: """ """.join(content.split(' ')[:-1]) |
|
Output: re.split('\\.\\s', text) |
|
bleu_metric: 15.903644176951381 |
|
---------- |
|
NL: convert scalar `x` to array |
|
ref: x = np.asarray(x).reshape(1, -1)[(0), :] |
|
Output: x = np.array([(x) for x in range(10)]) |
|
bleu_metric: 22.64081604016773 |
|
---------- |
|
NL: sum all elements of nested list `L` |
|
ref: sum(sum(i) if isinstance(i, list) else i for i in L) |
|
Output: ▁sum(len(l) for l in L) |
|
bleu_metric: 18.762776246088805 |
|
---------- |
|
NL: convert hex string '470FC614' to a float number |
|
ref: struct.unpack('!f', '470FC614'.decode('hex'))[0] |
|
Output: ▁struct.unpack('4ffFC614', 16)[0] |
|
bleu_metric: 33.05160413623505 |
|
---------- |
|
NL: Multiple each value by `2` for all keys in a dictionary `my_dict` |
|
ref: my_dict.update((x, y * 2) for x, y in list(my_dict.items())) |
|
Output: ▁dict((k, v) for k, v in my_dict.items()▁if v == 2) |
|
bleu_metric: 24.351580099223153 |
|
---------- |
|
NL: running bash script 'sleep.sh' |
|
ref: subprocess.call('sleep.sh', shell=True) |
|
Output: os.system('sleep.sh') |
|
bleu_metric: 40.728895472895154 |
|
---------- |
|
NL: Join elements of list `l` with a comma `,` |
|
ref: """,""".join(l) |
|
Output: ▁print(list(itertools.chain.from_iterable(l))) |
|
bleu_metric: 16.61742929957894 |
|
---------- |
|
NL: make a comma-separated string from a list `myList` |
|
ref: myList = ','.join(map(str, myList)) |
|
Output: myList =▁map(int, myList.split(',')) |
|
bleu_metric: 29.240074556521943 |
|
---------- |
|
NL: reverse the list that contains 1 to 10 |
|
ref: list(reversed(list(range(10)))) |
|
Output: ▁list(reversed([1, 10])) |
|
bleu_metric: 33.88714363186177 |
|
---------- |
|
NL: remove substring 'bag,' from a string 'lamp, bag, mirror' |
|
ref: print('lamp, bag, mirror'.replace('bag,', '')) |
|
Output: re.sub('(?<=[a-z])([A-Z])', '\\1', ' |
|
bleu_metric: 10.926857823700987 |
|
---------- |
|
NL: Reverse the order of words, delimited by `.`, in string `s` |
|
ref: """.""".join(s.split('.')[::-1]) |
|
Output: ▁sorted(reversed(words,▁string.split('.'))) |
|
bleu_metric: 26.517110852923754 |
|
---------- |
|
NL: convert epoch time represented as milliseconds `s` to string using format '%Y-%m-%d %H:%M:%S.%f' |
|
ref: datetime.datetime.fromtimestamp(s).strftime('%Y-%m-%d %H:%M:%S.%f') |
|
Output: ▁datetime.datetime.strptime(s, '%Y-%m-%d %H:%M:%S.% |
|
bleu_metric: 64.5554406408124 |
|
---------- |
|
NL: parse milliseconds epoch time '1236472051807' to format '%Y-%m-%d %H:%M:%S' |
|
ref: time.strftime('%Y-%m-%d %H:%M:%S', time.gmtime(1236472051807 / 1000.0)) |
|
Output: ▁datetime.datetime.strptime('1236472051807', '%Y-%m-%d %H: |
|
bleu_metric: 36.283299841087896 |
|
---------- |
|
NL: get the date 7 days before the current date |
|
ref: (datetime.datetime.now() - datetime.timedelta(days=7)).date() |
|
Output: ▁datetime.datetime.now().date() |
|
bleu_metric: 39.17901378181805 |
|
---------- |
|
NL: sum elements at index `column` of each list in list `data` |
|
ref: print(sum(row[column] for row in data)) |
|
Output: [sum(x) for x in data] |
|
bleu_metric: 15.924924144387933 |
|
---------- |
|
NL: sum columns of a list `array` |
|
ref: [sum(row[i] for row in array) for i in range(len(array[0]))] |
|
Output: ▁sum(df.sum(axis=1)) |
|
bleu_metric: 6.052326593839414 |
|
---------- |
|
NL: encode binary string 'your string' to base64 code |
|
ref: base64.b64encode(bytes('your string', 'utf-8')) |
|
Output: base64.b64encode('your▁string') |
|
bleu_metric: 24.554248848222283 |
|
---------- |
|
NL: combine list of dictionaries `dicts` with the same keys in each list to a single dictionary |
|
ref: dict((k, [d[k] for d in dicts]) for k in dicts[0]) |
|
Output: ▁dict((k, v) for d in▁dicts for k, v in▁list(d.items())) |
|
bleu_metric: 24.10600823901789 |
|
---------- |
|
NL: Merge a nested dictionary `dicts` into a flat dictionary by concatenating nested values with the same key `k` |
|
ref: {k: [d[k] for d in dicts] for k in dicts[0]} |
|
Output: ▁dict((k, v) for k, v in▁list(dicts.items())) |
|
bleu_metric: 8.17178415827399 |
|
---------- |
|
NL: How do I get the url parameter in a Flask view |
|
ref: request.args['myParam'] |
|
Output: ▁app.run(debug=True) |
|
bleu_metric: 12.605968092174912 |
|
---------- |
|
NL: identify duplicate values in list `mylist` |
|
ref: [k for k, v in list(Counter(mylist).items()) if v > 1] |
|
Output: set(['a', 'b', 'c']) |
|
bleu_metric: 6.171879938074473 |
|
---------- |
|
NL: Insert directory 'apps' into directory `__file__` |
|
ref: sys.path.insert(1, os.path.join(os.path.dirname(__file__), 'apps')) |
|
Output: ▁sys.path.apps(os.path.dirname(__file__)) |
|
bleu_metric: 37.386427821086265 |
|
---------- |
|
NL: modify sys.path for python module `subdir` |
|
ref: sys.path.append(os.path.join(os.path.dirname(__file__), 'subdir')) |
|
Output: ▁sys.path.append(subdir) |
|
bleu_metric: 13.681283243087492 |
|
---------- |
|
NL: Insert a 'None' value into a SQLite3 table. |
|
ref: db.execute("INSERT INTO present VALUES('test2', ?, 10)", (None,)) |
|
Output: db.commit() |
|
bleu_metric: 1.3648974794270936 |
|
---------- |
|
NL: flatten list `list_of_menuitems` |
|
ref: [image for menuitem in list_of_menuitems for image in menuitem] |
|
Output: ▁list_of_enumerate(chain.from_iterable(list_of_menuitems)) |
|
bleu_metric: 11.368272367804307 |
|
---------- |
|
NL: append elements of a set `b` to a list `a` |
|
ref: a.extend(b) |
|
Output: a.append(b) |
|
bleu_metric: 59.46035575013605 |
|
---------- |
|
NL: Append elements of a set to a list in Python |
|
ref: a.extend(list(b)) |
|
Output: a.extend([1, 2, 3]) |
|
bleu_metric: 30.576902884505113 |
|
---------- |
|
NL: write the data of dataframe `df` into text file `np.txt` |
|
ref: np.savetxt('c:\\data\\np.txt', df.values, fmt='%d') |
|
Output: df.to_numeric(np.txt) |
|
bleu_metric: 3.9614496879183108 |
|
---------- |
|
NL: write content of DataFrame `df` into text file 'c:\\data\\pandas.txt' |
|
ref: df.to_csv('c:\\data\\pandas.txt', header=None, index=None, sep=' ', mode='a') |
|
Output: df.to_csv('c:\\data\\pandas.txt') |
|
bleu_metric: 33.15109099076485 |
|
---------- |
|
NL: Split a string `x` by last occurrence of character `-` |
|
ref: print(x.rpartition('-')[0]) |
|
Output: x.rsplit('-', 1) |
|
bleu_metric: 28.24924701979438 |
|
---------- |
|
NL: get the last part of a string before the character '-' |
|
ref: print(x.rsplit('-', 1)[0]) |
|
Output: a[-1:] + a[:-1] |
|
bleu_metric: 9.389419352536649 |
|
---------- |
|
NL: upload file using FTP |
|
ref: ftp.storlines('STOR ' + filename, open(filename, 'r')) |
|
Output: upload_file = open('file.txt', 'wb') |
|
bleu_metric: 14.12701802079611 |
|
---------- |
|
NL: add one to the hidden web element with id 'XYZ' with selenium python script |
|
ref: browser.execute_script("document.getElementById('XYZ').value+='1'") |
|
Output: ▁driver.get('XYZ') |
|
bleu_metric: 13.581073322306715 |
|
---------- |
|
NL: create array containing the maximum value of respective elements of array `[2, 3, 4]` and array `[1, 5, 2]` |
|
ref: np.maximum([2, 3, 4], [1, 5, 2]) |
|
Output: np.argmax([2, 3, 4], [1, 5, 2]) |
|
bleu_metric: 88.67047947918724 |
|
---------- |
|
NL: print a list `l` and move first 3 elements to the end of the list |
|
ref: print(l[3:] + l[:3]) |
|
Output: l = [i for i, l in enumerate(l, 3)▁if l == 3] |
|
bleu_metric: 10.414419091986518 |
|
---------- |
|
NL: loop over files in directory '.' |
|
ref: for fn in os.listdir('.'): |
|
if os.path.isfile(fn): |
|
pass |
|
Output: for item in os.listdir('.') in os.listdir('.'):▁pass |
|
bleu_metric: 48.62438913464417 |
|
---------- |
|
NL: loop over files in directory `source` |
|
ref: for (root, dirs, filenames) in os.walk(source): |
|
for f in filenames: |
|
pass |
|
Output: for (not▁file in os.walk(source)):▁pass |
|
bleu_metric: 34.21915639793568 |
|
---------- |
|
NL: create a random list of integers |
|
ref: [int(1000 * random.random()) for i in range(10000)] |
|
Output: ▁randomList = [random.random() for _ in range(10)] |
|
bleu_metric: 35.22146109090851 |
|
---------- |
|
NL: Using %f with strftime() in Python to get microseconds |
|
ref: datetime.datetime.now().strftime('%H:%M:%S.%f') |
|
Output: ▁print(os.path.getmtime('/tmp/test.txt')) |
|
bleu_metric: 10.400016243706089 |
|
---------- |
|
NL: Google App Engine execute GQL query 'SELECT * FROM Schedule WHERE station = $1' with parameter `foo.key()` |
|
ref: db.GqlQuery('SELECT * FROM Schedule WHERE station = $1', foo.key()) |
|
Output: ▁cursor.execute('SELECT *▁FROM▁your Station = $1,') |
|
bleu_metric: 22.409416775129817 |
|
---------- |
|
NL: filter rows in pandas starting with alphabet 'f' using regular expression. |
|
ref: df.b.str.contains('^f') |
|
Output: df[(df['a'] > 1) & (df['b'] > 1)] |
|
bleu_metric: 6.871624004919695 |
|
---------- |
|
NL: print a 2 dimensional list `tab` as a table with delimiters |
|
ref: print('\n'.join('\t'.join(str(col) for col in row) for row in tab)) |
|
Output: a = [(a[i], b[i]) for i in range(0, len(a), 2)] |
|
bleu_metric: 6.711116671457737 |
|
---------- |
|
NL: pandas: delete rows in dataframe `df` based on multiple columns values |
|
ref: df.set_index(list('BC')).drop(tuples, errors='ignore').reset_index() |
|
Output: df.loc[df.columns == [(df.columns▁!= 0).any(axis=1)] |
|
bleu_metric: 8.722785633659552 |
|
---------- |
|
NL: format the variables `self.goals` and `self.penalties` using string formatting |
|
ref: """({:d} goals, ${:d})""".format(self.goals, self.penalties) |
|
Output: ▁print('{} {}'.format(self.goals,▁self.penalties)) |
|
bleu_metric: 34.66537079680952 |
|
---------- |
|
NL: format string "({} goals, ${})" with variables `goals` and `penalties` |
|
ref: """({} goals, ${})""".format(self.goals, self.penalties) |
|
Output: """({}, ${})""".format(goals, cents) |
|
bleu_metric: 61.17470797490066 |
|
---------- |
|
NL: format string "({0.goals} goals, ${0.penalties})" |
|
ref: """({0.goals} goals, ${0.penalties})""".format(self) |
|
Output: """({0.goals}, ${0.penalties})""".format('${0.go |
|
bleu_metric: 74.24213297217366 |
|
---------- |
|
NL: convert list of lists `L` to list of integers |
|
ref: [int(''.join(str(d) for d in x)) for x in L] |
|
Output: [int(x) for x in L] |
|
bleu_metric: 26.91716452870884 |
|
---------- |
|
NL: combine elements of each list in list `L` into digits of a single integer |
|
ref: [''.join(str(d) for d in x) for x in L] |
|
Output: [int(x) for x in L] |
|
bleu_metric: 31.16211115352542 |
|
---------- |
|
NL: convert a list of lists `L` to list of integers |
|
ref: L = [int(''.join([str(y) for y in x])) for x in L] |
|
Output: [int(x) for x in L] |
|
bleu_metric: 18.058610039563465 |
|
---------- |
|
NL: write the elements of list `lines` concatenated by special character '\n' to file `myfile` |
|
ref: myfile.write('\n'.join(lines)) |
|
Output: myfile.write('\n') |
|
bleu_metric: 51.6288658561904 |
|
---------- |
|
NL: removing an element from a list based on a predicate 'X' or 'N' |
|
ref: [x for x in ['AAT', 'XAC', 'ANT', 'TTA'] if 'X' not in x and 'N' not in x] |
|
Output: [x for x in lst▁if x▁!= 'N') |
|
bleu_metric: 12.603335496309672 |
|
---------- |
|
NL: Remove duplicate words from a string `text` using regex |
|
ref: text = re.sub('\\b(\\w+)( \\1\\b)+', '\\1', text) |
|
Output: re.sub('\\b\\b', '', text) |
|
bleu_metric: 29.302169335308744 |
|
---------- |
|
NL: count non zero values in each column in pandas data frame |
|
ref: df.astype(bool).sum(axis=1) |
|
Output: df.groupby(level=0).agg(lambda x: x.sum()) |
|
bleu_metric: 16.559113761114784 |
|
---------- |
|
NL: search for string that matches regular expression pattern '(?<!Distillr)\\\\AcroTray\\.exe' in string 'C:\\SomeDir\\AcroTray.exe' |
|
ref: re.search('(?<!Distillr)\\\\AcroTray\\.exe', 'C:\\SomeDir\\AcroTray.exe') |
|
Output: re.search('(?<!distillr)\\\AcroTray\\.exe', 'C:\ |
|
bleu_metric: 55.96008465608387 |
|
---------- |
|
NL: split string 'QH QD JC KD JS' into a list on white spaces |
|
ref: """QH QD JC KD JS""".split() |
|
Output: js.split('QH QD JC KD JS') |
|
bleu_metric: 48.49672907255956 |
|
---------- |
|
NL: search for occurrences of regex pattern '>.*<' in xml string `line` |
|
ref: print(re.search('>.*<', line).group(0)) |
|
Output: ▁print(re.search('>.*<',▁line)) |
|
bleu_metric: 66.21156208217488 |
|
---------- |
|
NL: erase all the contents of a file `filename` |
|
ref: open(filename, 'w').close() |
|
Output: open('filename', 'w').close() |
|
bleu_metric: 70.98108717509044 |
|
---------- |
|
NL: convert a string into datetime using the format '%Y-%m-%d %H:%M:%S.%f' |
|
ref: datetime.datetime.strptime(string_date, '%Y-%m-%d %H:%M:%S.%f') |
|
Output: ▁datetime.datetime.strptime('%Y-%m-%d %H:%M:%S.%f') |
|
bleu_metric: 88.27916928185874 |
|
---------- |
|
NL: find the index of a list with the first element equal to '332' within the list of lists `thelist` |
|
ref: [index for index, item in enumerate(thelist) if item[0] == '332'] |
|
Output: [i for i, e in enumerate(thelist)▁if e[0] == '332'] |
|
bleu_metric: 56.9717869265984 |
|
---------- |
|
NL: lower a string `text` and remove non-alphanumeric characters aside from space |
|
ref: re.sub('[^\\sa-zA-Z0-9]', '', text).lower().strip() |
|
Output: re.sub('[^0-9a-zA-Z]+', '', text) |
|
bleu_metric: 42.32964405407573 |
|
---------- |
|
NL: remove all non-alphanumeric characters except space from a string `text` and lower it |
|
ref: re.sub('(?!\\s)[\\W_]', '', text).lower().strip() |
|
Output: re.sub('[^0-9a-zA-Z]+', '', text) |
|
bleu_metric: 31.11523617245988 |
|
---------- |
|
NL: subscript text 'H20' with '2' as subscripted in matplotlib labels for arrays 'x' and 'y'. |
|
ref: plt.plot(x, y, label='H\u2082O') |
|
Output: plt.show() |
|
bleu_metric: 6.117046115680378 |
|
---------- |
|
NL: subscript text 'H20' with '2' as subscripted in matplotlib labels for arrays 'x' and 'y'. |
|
ref: plt.plot(x, y, label='$H_2O$') |
|
Output: plt.show() |
|
bleu_metric: 6.117046115680378 |
|
---------- |
|
NL: loop over a list `mylist` if sublists length equals 3 |
|
ref: [x for x in mylist if len(x) == 3] |
|
Output: [len(mylist) for _ in range(3)] |
|
bleu_metric: 15.934326838673723 |
|
---------- |
|
NL: initialize a list `lst` of 100 objects Object() |
|
ref: lst = [Object() for _ in range(100)] |
|
Output: [object(lst) for l in range(100)] |
|
bleu_metric: 51.697315395717055 |
|
---------- |
|
NL: create list `lst` containing 100 instances of object `Object` |
|
ref: lst = [Object() for i in range(100)] |
|
Output: [x for x in lst for x in range(100)] |
|
bleu_metric: 44.844165354587766 |
|
---------- |
|
NL: get the content of child tag with`href` attribute whose parent has css `someclass` |
|
ref: self.driver.find_element_by_css_selector('.someclass a').get_attribute('href') |
|
Output: href.get('someclass', '') |
|
bleu_metric: 13.739207814095348 |
|
---------- |
|
NL: joining data from dataframe `df1` with data from dataframe `df2` based on matching values of column 'Date_Time' in both dataframes |
|
ref: df1.merge(df2, on='Date_Time') |
|
Output: pd.merge(df1, df2,▁how='Date_Time').merge(df2, on='D |
|
bleu_metric: 44.05863767358845 |
|
---------- |
|
NL: use `%s` operator to print variable values `str1` inside a string |
|
ref: 'first string is: %s, second one is: %s' % (str1, 'geo.tif') |
|
Output: ▁print(str1, '%s' % ', '.join(str1, str1)) |
|
bleu_metric: 24.754295374108246 |
|
---------- |
|
NL: Split a string by a delimiter in python |
|
ref: [x.strip() for x in '2.MATCHES $$TEXT$$ STRING'.split('$$TEXT$$')] |
|
Output: re.split('\\s+', s) |
|
bleu_metric: 6.630841478192585 |
|
---------- |
|
NL: check if directory `directory ` exists and create it if necessary |
|
ref: if (not os.path.exists(directory)): |
|
os.makedirs(directory) |
|
Output: ▁print(os.path.exists(directory)) |
|
bleu_metric: 43.84096837774454 |
|
---------- |
|
NL: check if a directory `path` exists and create it if necessary |
|
ref: os.makedirs(path) |
|
Output: os.path.exists(path) |
|
bleu_metric: 45.18010018049224 |
|
---------- |
|
NL: check if a directory `path` exists and create it if necessary |
|
ref: distutils.dir_util.mkpath(path) |
|
Output: os.path.exists(path) |
|
bleu_metric: 42.728700639623405 |
|
---------- |
|
NL: check if a directory `path` exists and create it if necessary |
|
ref: os.makedirs(path) |
|
Output: os.path.exists(path) |
|
bleu_metric: 45.18010018049224 |
|
---------- |
|
NL: Replace a separate word 'H3' by 'H1' in a string 'text' |
|
ref: re.sub('\\bH3\\b', 'H1', text) |
|
Output: """""".join(['H3', 'H1', 'text']) |
|
bleu_metric: 27.186350343875553 |
|
---------- |
|
NL: substitute ASCII letters in string 'aas30dsa20' with empty string '' |
|
ref: re.sub('\\D', '', 'aas30dsa20') |
|
Output: """Aas30dSa20""".replace(' ', '') |
|
bleu_metric: 32.263864160302525 |
|
---------- |
|
NL: get digits only from a string `aas30dsa20` using lambda function |
|
ref: """""".join([x for x in 'aas30dsa20' if x.isdigit()]) |
|
Output: """""".join([c for c in aas30dsa20▁if c.isdigit()]) |
|
bleu_metric: 62.76638518128994 |
|
---------- |
|
NL: access a tag called "name" in beautifulsoup `soup` |
|
ref: print(soup.find('name').string) |
|
Output: ▁print(soup.findAll('name')) |
|
bleu_metric: 56.810968323374965 |
|
---------- |
|
NL: get a dictionary `records` of key-value pairs in PyMongo cursor `cursor` |
|
ref: records = dict((record['_id'], record) for record in cursor) |
|
Output: ▁dict([(k, v) for k, v in▁list(cursor.items())]) |
|
bleu_metric: 10.142430673893113 |
|
---------- |
|
NL: Create new matrix object by concatenating data from matrix A and matrix B |
|
ref: np.concatenate((A, B)) |
|
Output: ▁numpy.concatenate([(A, B)]) |
|
bleu_metric: 41.69392927528885 |
|
---------- |
|
NL: concat two matrices `A` and `B` in numpy |
|
ref: np.vstack((A, B)) |
|
Output: np.concatenate(A, B) |
|
bleu_metric: 49.832529198346116 |
|
---------- |
|
NL: Get the characters count in a file `filepath` |
|
ref: os.stat(filepath).st_size |
|
Output: ▁filepath.count('/path/to/filepath') |
|
bleu_metric: 9.672649511413093 |
|
---------- |
|
NL: count the occurrences of item "a" in list `l` |
|
ref: l.count('a') |
|
Output: ▁sum(1 for i in l▁if i.startswith('a')) |
|
bleu_metric: 24.64832197476761 |
|
---------- |
|
NL: count the occurrences of items in list `l` |
|
ref: Counter(l) |
|
Output: ▁sum(1 for i in l▁if i.startswith('\n') > 1) |
|
bleu_metric: 7.575731225158963 |
|
---------- |
|
NL: count the occurrences of items in list `l` |
|
ref: [[x, l.count(x)] for x in set(l)] |
|
Output: ▁sum(1 for i in l▁if i.startswith('\n') > 1) |
|
bleu_metric: 7.758410052509766 |
|
---------- |
|
NL: count the occurrences of items in list `l` |
|
ref: dict(((x, l.count(x)) for x in set(l))) |
|
Output: ▁sum(1 for i in l▁if i.startswith('\n') > 1) |
|
bleu_metric: 9.009113474307316 |
|
---------- |
|
NL: count the occurrences of item "b" in list `l` |
|
ref: l.count('b') |
|
Output: ▁sum(1 for i, j in zip(l, 'b')▁if j == j) |
|
bleu_metric: 15.450079547146164 |
|
---------- |
|
NL: copy file `srcfile` to directory `dstdir` |
|
ref: shutil.copy(srcfile, dstdir) |
|
Output: ▁shutil.copy(srcfile, dstdir) |
|
bleu_metric: 80.70557274927982 |
|
---------- |
|
NL: find the key associated with the largest value in dictionary `x` whilst key is non-zero value |
|
ref: max(k for k, v in x.items() if v != 0) |
|
Output: max(x,▁key=lambda x: x[0]) |
|
bleu_metric: 11.483394131362408 |
|
---------- |
|
NL: get the largest key whose not associated with value of 0 in dictionary `x` |
|
ref: (k for k, v in x.items() if v != 0) |
|
Output: max(k for k, v in x.items()▁if v▁!= 0) |
|
bleu_metric: 72.00242075875519 |
|
---------- |
|
NL: get the largest key in a dictionary `x` with non-zero value |
|
ref: max(k for k, v in x.items() if v != 0) |
|
Output: max(k for k, v in x.items()▁if v▁!= 0) |
|
bleu_metric: 76.74174160136337 |
|
---------- |
|
NL: Put the curser at beginning of the file |
|
ref: file.seek(0) |
|
Output: time.sleep(1) |
|
bleu_metric: 27.776190340117914 |
|
---------- |
|
NL: combine values from column 'b' and column 'a' of dataframe `df` into column 'c' of datafram `df` |
|
ref: df['c'] = np.where(df['a'].isnull, df['b'], df['a']) |
|
Output: df['C'] = df['B'].apply(lambda x: x.astype(int)) |
|
bleu_metric: 15.164081046360186 |
|
---------- |
|
NL: remove key 'ele' from dictionary `d` |
|
ref: del d['ele'] |
|
Output: d =▁dict((k, v) for k, v in d.items()▁if v) |
|
bleu_metric: 5.377336385080629 |
|
---------- |
|
NL: Update datetime field in `MyModel` to be the existing `timestamp` plus 100 years |
|
ref: MyModel.objects.update(timestamp=F('timestamp') + timedelta(days=36524.25)) |
|
Output: time.strftime('%Y-%m-%d %H:%M:%S', time.gmtime( |
|
bleu_metric: 7.278748444764005 |
|
---------- |
|
NL: merge list `['it']` and list `['was']` and list `['annoying']` into one list |
|
ref: ['it'] + ['was'] + ['annoying'] |
|
Output: ▁list(zip([1'it'], ['is'], ['annoYing'])) |
|
bleu_metric: 19.158743349944555 |
|
---------- |
|
NL: increment a value with leading zeroes in a number `x` |
|
ref: str(int(x) + 1).zfill(len(x)) |
|
Output: ▁numpy.zeros((x + 1) + x) |
|
bleu_metric: 19.950354926643225 |
|
---------- |
|
NL: check if a pandas dataframe `df`'s index is sorted |
|
ref: all(df.index[:-1] <= df.index[1:]) |
|
Output: df.index.sort() |
|
bleu_metric: 7.510537410248026 |
|
---------- |
|
NL: Convert tuple `t` to list |
|
ref: list(t) |
|
Output: tuple(t) |
|
bleu_metric: 75.98356856515926 |
|
---------- |
|
NL: Convert list `t` to tuple |
|
ref: tuple(l) |
|
Output: tuple(t) |
|
bleu_metric: 45.180100180492246 |
|
---------- |
|
NL: Convert tuple `level1` to list |
|
ref: level1 = map(list, level1) |
|
Output: ▁list(level1.decode('utf-8')) |
|
bleu_metric: 12.03921753741131 |
|
---------- |
|
NL: send the output of pprint object `dataobject` to file `logFile` |
|
ref: pprint.pprint(dataobject, logFile) |
|
Output: pprint(dataobject, logFile) |
|
bleu_metric: 77.8800783071405 |
|
---------- |
|
NL: get index of rows in column 'BoolCol' |
|
ref: df.loc[df['BoolCol']] |
|
Output: df.index |
|
bleu_metric: 2.5225322607845957 |
|
---------- |
|
NL: Create a list containing the indexes of rows where the value of column 'BoolCol' in dataframe `df` are equal to True |
|
ref: df.iloc[np.flatnonzero(df['BoolCol'])] |
|
Output: df[(df['Boolcol'] == 'true']) |
|
bleu_metric: 28.059228101129342 |
|
---------- |
|
NL: get list of indexes of rows where column 'BoolCol' values match True |
|
ref: df[df['BoolCol'] == True].index.tolist() |
|
Output: [i for i, v in enumerate(['Bool', 'Bool'])▁if v == 'true') |
|
bleu_metric: 11.751163762525296 |
|
---------- |
|
NL: get index of rows in dataframe `df` which column 'BoolCol' matches value True |
|
ref: df[df['BoolCol']].index.tolist() |
|
Output: df.index.tolist() |
|
bleu_metric: 28.866139906084342 |
|
---------- |
|
NL: change working directory to the directory `owd` |
|
ref: os.chdir(owd) |
|
Output: os.chdir('\\Users\\Desktop\\Desktop\\Desktop\\Desk |
|
bleu_metric: 17.001078098404225 |
|
---------- |
|
NL: insert data from a string `testfield` to sqlite db `c` |
|
ref: c.execute("INSERT INTO test VALUES (?, 'bar')", (testfield,)) |
|
Output: ▁cursor.execute('INSERT▁INTO▁table▁VALUES (%s, %s, %s)', (testfield,) |
|
bleu_metric: 36.151920269854195 |
|
---------- |
|
NL: decode string "\\x89\\n" into a normal string |
|
ref: """\\x89\\n""".decode('string_escape') |
|
Output: """\\x89\\n""".decode('utf-8') |
|
bleu_metric: 79.47545184555568 |
|
---------- |
|
NL: convert a raw string `raw_string` into a normal string |
|
ref: raw_string.decode('string_escape') |
|
Output: ▁raw_string.decode('unicode_escape') |
|
bleu_metric: 53.107253497886994 |
|
---------- |
|
NL: convert a raw string `raw_byte_string` into a normal string |
|
ref: raw_byte_string.decode('unicode_escape') |
|
Output: ▁raw_byte_string.decode('unicode_escape') |
|
bleu_metric: 80.70557274927982 |
|
---------- |
|
NL: split a string `s` with into all strings of repeated characters |
|
ref: [m.group(0) for m in re.finditer('(\\d)\\1*', s)] |
|
Output: re.findall('[^a-zA-Z]*', s) |
|
bleu_metric: 17.036282985955026 |
|
---------- |
|
NL: scatter a plot with x, y position of `np.random.randn(100)` and face color equal to none |
|
ref: plt.scatter(np.random.randn(100), np.random.randn(100), facecolors='none') |
|
Output: plt.show() |
|
bleu_metric: 0.8278521686370256 |
|
---------- |
|
NL: do a scatter plot with empty circles |
|
ref: plt.plot(np.random.randn(100), np.random.randn(100), 'o', mfc='none') |
|
Output: plt.show() |
|
bleu_metric: 0.42503347540650505 |
|
---------- |
|
NL: remove a div with a id `main-content` using beautifulsoup |
|
ref: soup.find('div', id='main-content').decompose() |
|
Output: ▁print(soup.findAll('div', class_='maincontent')) |
|
bleu_metric: 34.193725219509716 |
|
---------- |
|
NL: filter rows containing key word `ball` in column `ids` |
|
ref: df[df['ids'].str.contains('ball')] |
|
Output: [(k, v) for k, v in df.ids] |
|
bleu_metric: 11.123500809946101 |
|
---------- |
|
NL: convert index at level 0 into a column in dataframe `df` |
|
ref: df.reset_index(level=0, inplace=True) |
|
Output: df['index'] = df['index'].apply(lambda x: x.tolist()) |
|
bleu_metric: 7.592939129822969 |
|
---------- |
|
NL: Add indexes in a data frame `df` to a column `index1` |
|
ref: df['index1'] = df.index |
|
Output: df['index1'] = df['index1'].index |
|
bleu_metric: 55.54570250728591 |
|
---------- |
|
NL: convert pandas index in a dataframe to columns |
|
ref: df.reset_index(level=['tick', 'obs']) |
|
Output: df.set_index(['index', 'index']) |
|
bleu_metric: 32.51279032103401 |
|
---------- |
|
NL: Get reverse of list items from list 'b' using extended slicing |
|
ref: [x[::-1] for x in b] |
|
Output: [x[i:i + 2] for i in range(0, len(x), 2)] |
|
bleu_metric: 17.895706401541528 |
|
---------- |
|
NL: join each element in array `a` with element at the same index in array `b` as a tuple |
|
ref: np.array([zip(x, y) for x, y in zip(a, b)]) |
|
Output: A = [(a + b) for a, b in zip(A, B)] |
|
bleu_metric: 18.114844247735682 |
|
---------- |
|
NL: zip two 2-d arrays `a` and `b` |
|
ref: np.array(zip(a.ravel(), b.ravel()), dtype='i4,i4').reshape(a.shape) |
|
Output: np.array(zip(a, b)) |
|
bleu_metric: 10.156383094063225 |
|
---------- |
|
NL: convert list `list_of_ints` into a comma separated string |
|
ref: """,""".join([str(i) for i in list_of_ints]) |
|
Output: """""".join(list_of_ints) |
|
bleu_metric: 31.139742129493257 |
|
---------- |
|
NL: Send a post request with raw data `DATA` and basic authentication with `username` and `password` |
|
ref: requests.post(url, data=DATA, headers=HEADERS_DICT, auth=(username, password)) |
|
Output: r =▁requests.post(url, data=data,▁headers=headers,▁files=passwords) |
|
bleu_metric: 38.57153091307505 |
|
---------- |
|
NL: Find last occurrence of character '}' in string "abcd}def}" |
|
ref: 'abcd}def}'.rfind('}') |
|
Output: """abcd}def}""".rfind('}.rsplit('\\d+') |
|
bleu_metric: 42.26469376227503 |
|
---------- |
|
NL: Iterate ove list `[1, 2, 3]` using list comprehension |
|
ref: print([item for item in [1, 2, 3]]) |
|
Output: [(i, j) for i, j in zip([1, 2, 3])▁if j == j] |
|
bleu_metric: 27.061633707336412 |
|
---------- |
|
NL: extract all the values with keys 'x' and 'y' from a list of dictionaries `d` to list of tuples |
|
ref: [(x['x'], x['y']) for x in d] |
|
Output: [d['x'], d['y'], d['d'], d['x'], d[ |
|
bleu_metric: 30.398382447928807 |
|
---------- |
|
NL: get the filename without the extension from file 'hemanth.txt' |
|
ref: print(os.path.splitext(os.path.basename('hemanth.txt'))[0]) |
|
Output: ▁print(os.path.splitext('hemanth.txt')) |
|
bleu_metric: 51.55938317965318 |
|
---------- |
|
NL: create a dictionary by adding each two adjacent elements in tuple `x` as key/value pair to it |
|
ref: dict(x[i:i + 2] for i in range(0, len(x), 2)) |
|
Output: ▁dict(zip(x[::2], x[1::2])) |
|
bleu_metric: 16.45452192914717 |
|
---------- |
|
NL: create a list containing flattened list `[['A', 'B', 'C'], ['D', 'E', 'F'], ['G', 'H', 'I']]` |
|
ref: values = sum([['A', 'B', 'C'], ['D', 'E', 'F'], ['G', 'H', 'I']], []) |
|
Output: [['A', 'B', 'C'], ['D', 'E', 'F'], [' |
|
bleu_metric: 53.170929354453335 |
|
---------- |
|
NL: select rows in a dataframe `df` column 'closing_price' between two values 99 and 101 |
|
ref: df = df[(df['closing_price'] >= 99) & (df['closing_price'] <= 101)] |
|
Output: df.loc[df['cold_Price'] == 99] |
|
bleu_metric: 9.613222089577718 |
|
---------- |
|
NL: replace all occurences of newlines `\n` with `<br>` in dataframe `df` |
|
ref: df.replace({'\n': '<br>'}, regex=True) |
|
Output: df = pd.read_csv('\n').replace('\n', '<br>') |
|
bleu_metric: 33.87144423286913 |
|
---------- |
|
NL: replace all occurrences of a string `\n` by string `<br>` in a pandas data frame `df` |
|
ref: df.replace({'\n': '<br>'}, regex=True) |
|
Output: df = pd.read_csv('\n').replace('\n', '<br>') |
|
bleu_metric: 33.87144423286913 |
|
---------- |
|
NL: create a list containing each two adjacent letters in string `word` as its elements |
|
ref: [(x + y) for x, y in zip(word, word[1:])] |
|
Output: [word[i:i + 2] for i in range(0, len(word), 2)] |
|
bleu_metric: 15.253223052326929 |
|
---------- |
|
NL: Get a list of pairs from a string `word` using lambda function |
|
ref: list(map(lambda x, y: x + y, word[:-1], word[1:])) |
|
Output: ▁list(word.split(',')) |
|
bleu_metric: 7.965309748053327 |
|
---------- |
|
NL: extract a url from a string `myString` |
|
ref: print(re.findall('(https?://[^\\s]+)', myString)) |
|
Output: re.findall('\\w+', myString) |
|
bleu_metric: 25.34712979535927 |
|
---------- |
|
NL: extract a url from a string `myString` |
|
ref: print(re.search('(?P<url>https?://[^\\s]+)', myString).group('url')) |
|
Output: re.findall('\\w+', myString) |
|
bleu_metric: 8.146914412736555 |
|
---------- |
|
NL: remove all special characters, punctuation and spaces from a string `mystring` using regex |
|
ref: re.sub('[^A-Za-z0-9]+', '', mystring) |
|
Output: """""".join(re.sub('\\w+', '', mystring)) |
|
bleu_metric: 40.6731552331291 |
|
---------- |
|
NL: create a DatetimeIndex containing 13 periods of the second friday of each month starting from date '2016-01-01' |
|
ref: pd.date_range('2016-01-01', freq='WOM-2FRI', periods=13) |
|
Output: ▁datetime.datetime.now().strftime('%Y-%m-%d %H:%M') |
|
bleu_metric: 8.004434939657356 |
|
---------- |
|
NL: Create multidimensional array `matrix` with 3 rows and 2 columns in python |
|
ref: matrix = [[a, b], [c, d], [e, f]] |
|
Output: ▁matrix = [[[0, 0], [0, 0], [0, 0], [0, 0], [0, 0]], [0, |
|
bleu_metric: 15.448396990132697 |
|
---------- |
|
NL: replace spaces with underscore |
|
ref: mystring.replace(' ', '_') |
|
Output: re.sub('(?<=[a-z])(?=[A-Z])', '\\1' |
|
bleu_metric: 9.500266321476488 |
|
---------- |
|
NL: get an absolute file path of file 'mydir/myfile.txt' |
|
ref: os.path.abspath('mydir/myfile.txt') |
|
Output: os.path.abspath('mydir/myfile.txt') |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: split string `my_string` on white spaces |
|
ref: """ """.join(my_string.split()) |
|
Output: """ """.join(my_string.split()) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: get filename without extension from file `filename` |
|
ref: os.path.splitext(filename)[0] |
|
Output: os.path.splitext(filename) |
|
bleu_metric: 64.74591278836638 |
|
---------- |
|
NL: get a list containing the sum of each element `i` in list `l` plus the previous elements |
|
ref: [sum(l[:i]) for i, _ in enumerate(l)] |
|
Output: [sum(i) for i, j in zip(l, l)] |
|
bleu_metric: 41.46278264707056 |
|
---------- |
|
NL: split a string `Docs/src/Scripts/temp` by `/` keeping `/` in the result |
|
ref: """Docs/src/Scripts/temp""".replace('/', '/\x00/').split('\x00') |
|
Output: ▁print(docs/src/Scripts/temp.split('/')) |
|
bleu_metric: 23.898608686716166 |
|
---------- |
|
NL: shuffle columns of an numpy array 'r' |
|
ref: np.random.shuffle(np.transpose(r)) |
|
Output: np.random.shuffle(np.random.randn(r)) |
|
bleu_metric: 69.64705665515707 |
|
---------- |
|
NL: copy all values in a column 'B' to a new column 'D' in a pandas data frame 'df' |
|
ref: df['D'] = df['B'] |
|
Output: df['B'] = df['D'].values.tolist() |
|
bleu_metric: 63.53091572554783 |
|
---------- |
|
NL: find a value within nested json 'data' where the key inside another key 'B' is unknown. |
|
ref: list(data['A']['B'].values())[0]['maindata'][0]['Info'] |
|
Output: [item for item in data▁if item['B'] not in item] |
|
bleu_metric: 12.5687883644936 |
|
---------- |
|
NL: check characters of string `string` are true predication of function `predicate` |
|
ref: all(predicate(x) for x in string) |
|
Output: ▁any(pred(x) for x in▁string.split()) |
|
bleu_metric: 33.92375549949802 |
|
---------- |
|
NL: determine number of files on a drive with python |
|
ref: os.statvfs('/').f_files - os.statvfs('/').f_ffree |
|
Output: ▁sum(i for i in os.listdir('filename')▁if os.path.isfile(filename)) |
|
bleu_metric: 10.12895233093219 |
|
---------- |
|
NL: how to get a single result from a SQLite query in python? |
|
ref: cursor.fetchone()[0] |
|
Output: ▁cursor.execute('INSERT▁INTO▁table▁VALUES (%s, %s, %s)', (var1, var2, |
|
bleu_metric: 5.912329024877923 |
|
---------- |
|
NL: convert string `user_input` into a list of integers `user_list` |
|
ref: user_list = [int(number) for number in user_input.split(',')] |
|
Output: user_list = [int(i) for i in▁user_input.split(',')] |
|
bleu_metric: 66.43548861507492 |
|
---------- |
|
NL: Get a list of integers by splitting a string `user` with comma |
|
ref: [int(s) for s in user.split(',')] |
|
Output: [int(x) for x in▁user.split(',')] |
|
bleu_metric: 64.55651607183006 |
|
---------- |
|
NL: Sorting a Python list by two criteria |
|
ref: sorted(list, key=lambda x: (x[0], -x[1])) |
|
Output: a.sort(key=lambda x: (x[0], x[0]), reverse=True) |
|
bleu_metric: 49.45703137422567 |
|
---------- |
|
NL: sort a list of objects `ut`, based on a function `cmpfun` in descending order |
|
ref: ut.sort(key=cmpfun, reverse=True) |
|
Output: ▁sorted(ut,▁key=lambda x: func(x, -1)) |
|
bleu_metric: 10.813005337959174 |
|
---------- |
|
NL: reverse list `ut` based on the `count` attribute of each object |
|
ref: ut.sort(key=lambda x: x.count, reverse=True) |
|
Output: ▁print(reversed(ut,▁key=lambda x: x.count(), reverse=True)) |
|
bleu_metric: 45.26353562390146 |
|
---------- |
|
NL: sort a list of objects `ut` in reverse order by their `count` property |
|
ref: ut.sort(key=lambda x: x.count, reverse=True) |
|
Output: ▁sorted(ut,▁key=lambda x:▁count.count(x[0], x[0])) |
|
bleu_metric: 20.563241139732103 |
|
---------- |
|
NL: click a href button 'Send' with selenium |
|
ref: driver.find_element_by_partial_link_text('Send').click() |
|
Output: ▁driver.find_element_by_css_selector('send') |
|
bleu_metric: 20.083909447408573 |
|
---------- |
|
NL: click a href button having text `Send InMail` with selenium |
|
ref: driver.findElement(By.linkText('Send InMail')).click() |
|
Output: ▁driver.find_element_by_xpath('send inMail').click() |
|
bleu_metric: 33.83154336027537 |
|
---------- |
|
NL: click a href button with text 'Send InMail' with selenium |
|
ref: driver.find_element_by_link_text('Send InMail').click() |
|
Output: ▁driver.find_element_by_css_selector('Send InMail').click() |
|
bleu_metric: 73.51460991014883 |
|
---------- |
|
NL: cast an int `i` to a string and concat to string 'ME' |
|
ref: 'ME' + str(i) |
|
Output: """ME""".encode('utf-8') |
|
bleu_metric: 17.124730448946572 |
|
---------- |
|
NL: Sorting data in DataFrame Pandas |
|
ref: df.sort_values(['System_num', 'Dis']) |
|
Output: df.sort_values(['a', 'b'],▁ascending=[True, False], |
|
bleu_metric: 31.011575752288344 |
|
---------- |
|
NL: prepend the line '#test firstline\n' to the contents of file 'infile' and save as the file 'outfile' |
|
ref: open('outfile', 'w').write('#test firstline\n' + open('infile').read()) |
|
Output: open('infile', '#test firstline\n') |
|
bleu_metric: 23.71937737244433 |
|
---------- |
|
NL: sort a list `l` by length of value in tuple |
|
ref: l.sort(key=lambda t: len(t[1]), reverse=True) |
|
Output: ▁sorted(l,▁key=len) |
|
bleu_metric: 8.655647308002333 |
|
---------- |
|
NL: split string `s` by words that ends with 'd' |
|
ref: re.findall('\\b(\\w+)d\\b', s) |
|
Output: re.split('\\s+', s) |
|
bleu_metric: 28.449457729768916 |
|
---------- |
|
NL: return `True` if string `foobarrrr` contains regex `ba[rzd]` |
|
ref: bool(re.search('ba[rzd]', 'foobarrrr')) |
|
Output: """""".join(re.findall('[^a-zd]*', 'foobarrarrrr |
|
bleu_metric: 15.35259783865636 |
|
---------- |
|
NL: Removing duplicates in list `t` |
|
ref: list(set(t)) |
|
Output: ▁list(set(t)) |
|
bleu_metric: 78.60753021519787 |
|
---------- |
|
NL: Removing duplicates in list `source_list` |
|
ref: list(set(source_list)) |
|
Output: ▁print([item for item in▁list(source_list)▁if item.endswith('item')]) |
|
bleu_metric: 11.295714543953919 |
|
---------- |
|
NL: Removing duplicates in list `abracadabra` |
|
ref: list(OrderedDict.fromkeys('abracadabra')) |
|
Output: [dict((x, x) for x, y in▁itertools.groupby(lambda x: x.group(0)) |
|
bleu_metric: 8.635800047213174 |
|
---------- |
|
NL: Convert array `a` into a list |
|
ref: numpy.array(a).reshape(-1).tolist() |
|
Output: ▁list(array.from_iterable(a)) |
|
bleu_metric: 16.778292801990535 |
|
---------- |
|
NL: Convert the first row of numpy matrix `a` to a list |
|
ref: numpy.array(a)[0].tolist() |
|
Output: a = np.array(a) |
|
bleu_metric: 32.2645258949984 |
|
---------- |
|
NL: In `soup`, get the content of the sibling of the `td` tag with text content `Address:` |
|
ref: print(soup.find(text='Address:').findNext('td').contents[0]) |
|
Output: soup.find_element_by_xpath("//p[@id, 'id']/text()"). |
|
bleu_metric: 12.825436069560483 |
|
---------- |
|
NL: convert elements of each tuple in list `l` into a string separated by character `@` |
|
ref: """ """.join([('%d@%d' % t) for t in l]) |
|
Output: """""".join(l[0] for l in zip(l[::2], l[1::2])) |
|
bleu_metric: 32.31269177549822 |
|
---------- |
|
NL: convert each tuple in list `l` to a string with '@' separating the tuples' elements |
|
ref: """ """.join([('%d@%d' % (t[0], t[1])) for t in l]) |
|
Output: [(x, y) for x, y in zip(l, l[::2], l[1::2])] |
|
bleu_metric: 8.274984205902886 |
|
---------- |
|
NL: get the html from the current web page of a Selenium driver |
|
ref: driver.execute_script('return document.documentElement.outerHTML;') |
|
Output: ▁driver.get('http://stackoverflow.com') |
|
bleu_metric: 18.710158230410627 |
|
---------- |
|
NL: Get all matches with regex pattern `\\d+[xX]` in list of string `teststr` |
|
ref: [i for i in teststr if re.search('\\d+[xX]', i)] |
|
Output: re.findall('\\d+[xX]', teststr) |
|
bleu_metric: 43.99022083366858 |
|
---------- |
|
NL: select values from column 'A' for which corresponding values in column 'B' will be greater than 50, and in column 'C' - equal 900 in dataframe `df` |
|
ref: df['A'][(df['B'] > 50) & (df['C'] == 900)] |
|
Output: df['B'] = df['C'].str.lower() |
|
bleu_metric: 32.3967345710975 |
|
---------- |
|
NL: Sort dictionary `o` in ascending order based on its keys and items |
|
ref: sorted(o.items()) |
|
Output: ▁sorted(list(o.items()),▁key=lambda x: x[1]) |
|
bleu_metric: 29.452884374019472 |
|
---------- |
|
NL: get sorted list of keys of dict `d` |
|
ref: sorted(d) |
|
Output: ▁sorted(list(d.items()),▁key=lambda x: x[1]) |
|
bleu_metric: 9.043565779655339 |
|
---------- |
|
NL: How to sort dictionaries by keys in Python |
|
ref: sorted(d.items()) |
|
Output: ▁sorted(list(d.items()),▁key=lambda x: x[1]) |
|
bleu_metric: 29.452884374019472 |
|
---------- |
|
NL: convert string "1" into integer |
|
ref: int('1') |
|
Output: int('1', 2) |
|
bleu_metric: 58.143073696821936 |
|
---------- |
|
NL: function to convert strings into integers |
|
ref: int() |
|
Output: int(''.join(map(str, s))) |
|
bleu_metric: 12.729922658368398 |
|
---------- |
|
NL: convert items in `T1` to integers |
|
ref: T2 = [map(int, x) for x in T1] |
|
Output: int(''.join(map(str,▁row))) |
|
bleu_metric: 11.75029694362029 |
|
---------- |
|
NL: call a shell script `./test.sh` using subprocess |
|
ref: subprocess.call(['./test.sh']) |
|
Output: subprocess.call(['./test.sh']) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: call a shell script `notepad` using subprocess |
|
ref: subprocess.call(['notepad']) |
|
Output: subprocess.call(['notepad']) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: combine lists `l1` and `l2` by alternating their elements |
|
ref: [val for pair in zip(l1, l2) for val in pair] |
|
Output: [(x + y) for x, y in zip(l1, l2)] |
|
bleu_metric: 40.59264050928986 |
|
---------- |
|
NL: encode string 'data to be encoded' |
|
ref: encoded = base64.b64encode('data to be encoded') |
|
Output: 'data to be encoded'.encode('data to be encoded') |
|
bleu_metric: 50.495676290868666 |
|
---------- |
|
NL: encode a string `data to be encoded` to `ascii` encoding |
|
ref: encoded = 'data to be encoded'.encode('ascii') |
|
Output: ▁print(ascii.encode('data to be encoded')) |
|
bleu_metric: 51.09375879171261 |
|
---------- |
|
NL: parse tab-delimited CSV file 'text.txt' into a list |
|
ref: lol = list(csv.reader(open('text.txt', 'rb'), delimiter='\t')) |
|
Output: ▁writer.writerows(['text.txt', 'rb').split(',')) |
|
bleu_metric: 43.42718513715163 |
|
---------- |
|
NL: Get attribute `my_str` of object `my_object` |
|
ref: getattr(my_object, my_str) |
|
Output: ▁getattr(my_str, my_object) |
|
bleu_metric: 26.26909894424158 |
|
---------- |
|
NL: group a list of dicts `LD` into one dict by key |
|
ref: print(dict(zip(LD[0], zip(*[list(d.values()) for d in LD])))) |
|
Output: mydict = {k: v for k, v in▁list(LD.items())} |
|
bleu_metric: 9.34970953032271 |
|
---------- |
|
NL: How do I sum the first value in each tuple in a list of tuples in Python? |
|
ref: sum([pair[0] for pair in list_of_pairs]) |
|
Output: ▁sum(x[0] for x in▁rows) |
|
bleu_metric: 30.130404892785684 |
|
---------- |
|
NL: convert unicode string u"{'code1':1,'code2':1}" into dictionary |
|
ref: d = ast.literal_eval("{'code1':1,'code2':1}") |
|
Output: ▁dict(('{'code1':1,'code2':1}'.encode('unicode_escape') |
|
bleu_metric: 61.32878268086118 |
|
---------- |
|
NL: find all words in a string `mystring` that start with the `$` sign |
|
ref: [word for word in mystring.split() if word.startswith('$')] |
|
Output: re.findall('\\w+', mystring) |
|
bleu_metric: 8.395097551291249 |
|
---------- |
|
NL: remove any url within string `text` |
|
ref: text = re.sub('^https?:\\/\\/.*[\\r\\n]*', '', text, flags=re.MULTILINE) |
|
Output: ▁url = re.sub('▁?\\s+', '', text) |
|
bleu_metric: 21.464898124935406 |
|
---------- |
|
NL: replace all elements in array `A` that are not present in array `[1, 3, 4]` with zeros |
|
ref: np.where(np.in1d(A, [1, 3, 4]).reshape(A.shape), A, 0) |
|
Output: np.where(np.isnan(a), [1, 3, 4]) |
|
bleu_metric: 40.9574484442826 |
|
---------- |
|
NL: calculate mean across dimension in a 2d array `a` |
|
ref: np.mean(a, axis=1) |
|
Output: np.mean(a,▁axis=1) |
|
bleu_metric: 76.11606003349893 |
|
---------- |
|
NL: running r script '/pathto/MyrScript.r' from python |
|
ref: subprocess.call(['/usr/bin/Rscript', '--vanilla', '/pathto/MyrScript.r']) |
|
Output: os.system('/pathto/MyrScript.r') |
|
bleu_metric: 20.95597855867423 |
|
---------- |
|
NL: run r script '/usr/bin/Rscript --vanilla /pathto/MyrScript.r' |
|
ref: subprocess.call('/usr/bin/Rscript --vanilla /pathto/MyrScript.r', shell=True) |
|
Output: os.system('/usr/bin/rscript --vanilla /pathto/MyrScript.r') |
|
bleu_metric: 60.11385699767446 |
|
---------- |
|
NL: add a header to a csv file |
|
ref: writer.writeheader() |
|
Output: ▁writer.writeheader() |
|
bleu_metric: 72.59795291154771 |
|
---------- |
|
NL: replacing nan in the dataframe `df` with row average |
|
ref: df.fillna(df.mean(axis=1), axis=1) |
|
Output: df.fillna(lambda x: x.fillna(x.mean(),▁axis=1)) |
|
bleu_metric: 31.449494592022948 |
|
---------- |
|
NL: Convert unix timestamp '1347517370' to formatted string '%Y-%m-%d %H:%M:%S' |
|
ref: time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(1347517370)) |
|
Output: time.strftime('.%Y-%m-%d %H:%M:%S') |
|
bleu_metric: 66.6355295714607 |
|
---------- |
|
NL: Call a base class's class method `do` from derived class `Derived` |
|
ref: super(Derived, cls).do(a) |
|
Output: super(Do,▁self).__init__(*args,▁**kwargs) |
|
bleu_metric: 13.26475916741222 |
|
---------- |
|
NL: selecting rows in Numpy ndarray 'a', where the value in the first column is 0 and value in the second column is 1 |
|
ref: a[np.where((a[:, (0)] == 0) * (a[:, (1)] == 1))] |
|
Output: ▁numpy.array([[0, 0, 1, 0], [0, 1, 0], [0, 1, 0], [ |
|
bleu_metric: 5.636775411569542 |
|
---------- |
|
NL: separate words delimited by one or more spaces into a list |
|
ref: re.split(' +', 'hello world sample text') |
|
Output: [' '.join(l) for l in re.split('\\s+','', s)] |
|
bleu_metric: 23.977362037775197 |
|
---------- |
|
NL: length of longest element in list `words` |
|
ref: len(max(words, key=len)) |
|
Output: len(words) - len(words) |
|
bleu_metric: 21.258637840736228 |
|
---------- |
|
NL: get the value associated with unicode key 'from_user' of first dictionary in list `result` |
|
ref: result[0]['from_user'] |
|
Output: ▁print([x['from_user'] for x in▁list(result.items())]) |
|
bleu_metric: 19.427446513842177 |
|
---------- |
|
NL: Retrieve each line from a file 'File.txt' as a list |
|
ref: [line.split() for line in open('File.txt')] |
|
Output: ▁file.write('File.txt') |
|
bleu_metric: 32.500555971011345 |
|
---------- |
|
NL: swap keys with values in a dictionary `a` |
|
ref: res = dict((v, k) for k, v in a.items()) |
|
Output: ▁dict((v, k) for k, v in a.items()) |
|
bleu_metric: 90.21315316859231 |
|
---------- |
|
NL: Open a file `path/to/FILE_NAME.ext` in write mode |
|
ref: new_file = open('path/to/FILE_NAME.ext', 'w') |
|
Output: os.system('path/to/FILE_NAME.ext') |
|
bleu_metric: 55.9978208842951 |
|
---------- |
|
NL: How to count distinct values in a column of a pandas group by object? |
|
ref: df.groupby(['col1', 'col2'])['col3'].nunique().reset_index() |
|
Output: df.groupby(['col1', 'col2']).apply(lambda x: x.groupby(' |
|
bleu_metric: 54.116466213090966 |
|
---------- |
|
NL: Check if any key in the dictionary `dict1` starts with the string `EMP$$` |
|
ref: any(key.startswith('EMP$$') for key in dict1) |
|
Output: ▁any(k for k, v in▁dict1.items()▁if 'EMP$$$' in k) |
|
bleu_metric: 19.91148803162055 |
|
---------- |
|
NL: create list of values from dictionary `dict1` that have a key that starts with 'EMP$$' |
|
ref: [value for key, value in list(dict1.items()) if key.startswith('EMP$$')] |
|
Output: [d['EMP$'] for d in▁dict1.values()] |
|
bleu_metric: 14.693064660889684 |
|
---------- |
|
NL: convert a pandas series `sf` into a pandas dataframe `df` with columns `email` and `list` |
|
ref: pd.DataFrame({'email': sf.index, 'list': sf.values}) |
|
Output: df = pd.DataFrame(sf,▁columns=['email', 'list']) |
|
bleu_metric: 35.69768415530451 |
|
---------- |
|
NL: print elements of list `list` seperated by tabs `\t` |
|
ref: print('\t'.join(map(str, list))) |
|
Output: ▁print('\t'.join(map(str,▁list))) |
|
bleu_metric: 77.39321540474097 |
|
---------- |
|
NL: print unicode string '\xd0\xbf\xd1\x80\xd0\xb8' with utf-8 |
|
ref: print('\xd0\xbf\xd1\x80\xd0\xb8'.encode('raw_unicode_escape')) |
|
Output: ▁print('\xd0\xbf\xd1\x80\xd0\xb8'.encode( |
|
bleu_metric: 75.96292058519337 |
|
---------- |
|
NL: Encode a latin character in string `Sopet\xc3\xb3n` properly |
|
ref: 'Sopet\xc3\xb3n'.encode('latin-1').decode('utf-8') |
|
Output: sopet\xc3\xb3n.encode('latin') |
|
bleu_metric: 21.252609690759098 |
|
---------- |
|
NL: resized image `image` to width, height of `(x, y)` with filter of `ANTIALIAS` |
|
ref: image = image.resize((x, y), Image.ANTIALIAS) |
|
Output: image =▁Image.reset_image(image, (x, y)) |
|
bleu_metric: 37.432615061973365 |
|
---------- |
|
NL: regex, find "n"s only in the middle of string `s` |
|
ref: re.findall('n(?<=[^n]n)n+(?=[^n])(?i)', s) |
|
Output: re.findall('\\d+', s) |
|
bleu_metric: 13.004547755725982 |
|
---------- |
|
NL: display the float `1/3*100` as a percentage |
|
ref: print('{0:.0f}%'.format(1.0 / 3 * 100)) |
|
Output: ▁print('{0:.2f}'.format(1/3*100)) |
|
bleu_metric: 65.24084871752925 |
|
---------- |
|
NL: sort a list of dictionary `mylist` by the key `title` |
|
ref: mylist.sort(key=lambda x: x['title']) |
|
Output: mylist.sort(key=lambda x: x['title']) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: sort a list `l` of dicts by dict value 'title' |
|
ref: l.sort(key=lambda x: x['title']) |
|
Output: ▁sorted(l,▁key=itemgetter('title', 'title')) |
|
bleu_metric: 15.448759309616733 |
|
---------- |
|
NL: sort a list of dictionaries by the value of keys 'title', 'title_url', 'id' in ascending order. |
|
ref: l.sort(key=lambda x: (x['title'], x['title_url'], x['id'])) |
|
Output: ▁sorted(list_of_dicts,▁key=lambda x: x['title']['title'], reverse=Tru |
|
bleu_metric: 34.214468780181804 |
|
---------- |
|
NL: find 10 largest differences between each respective elements of list `l1` and list `l2` |
|
ref: heapq.nlargest(10, range(len(l1)), key=lambda i: abs(l1[i] - l2[i])) |
|
Output: max(l1,▁key=lambda x: (x[1], x[0]), reverse=True) |
|
bleu_metric: 11.878881948379775 |
|
---------- |
|
NL: BeautifulSoup find all 'span' elements in HTML string `soup` with class of 'starGryB sp' |
|
ref: soup.find_all('span', {'class': 'starGryB sp'}) |
|
Output: soup.findAll('starGryB sp') |
|
bleu_metric: 27.40227985814397 |
|
---------- |
|
NL: write records in dataframe `df` to table 'test' in schema 'a_schema' |
|
ref: df.to_sql('test', engine, schema='a_schema') |
|
Output: df.to_csv('test') |
|
bleu_metric: 23.118543024585154 |
|
---------- |
|
NL: Extract brackets from string `s` |
|
ref: brackets = re.sub('[^(){}[\\]]', '', s) |
|
Output: re.findall('\\[(\\w+)\\]', s) |
|
bleu_metric: 28.446938709683227 |
|
---------- |
|
NL: remove duplicate elements from list 'L' |
|
ref: list(dict((x[0], x) for x in L).values()) |
|
Output: ▁list(set(l)) |
|
bleu_metric: 7.902834459544201 |
|
---------- |
|
NL: read a file `file` without newlines |
|
ref: [line.rstrip('\n') for line in file] |
|
Output: open('file', 'w').readline() |
|
bleu_metric: 13.399118318121793 |
|
---------- |
|
NL: get the position of item 1 in `testlist` |
|
ref: [i for (i, x) in enumerate(testlist) if (x == 1)] |
|
Output: ▁print(testlist.position()) |
|
bleu_metric: 6.435022756527756 |
|
---------- |
|
NL: get the position of item 1 in `testlist` |
|
ref: [i for (i, x) in enumerate(testlist) if (x == 1)] |
|
Output: ▁print(testlist.position()) |
|
bleu_metric: 6.435022756527756 |
|
---------- |
|
NL: get the position of item 1 in `testlist` |
|
ref: for i in [i for (i, x) in enumerate(testlist) if (x == 1)]: |
|
pass |
|
Output: ▁print(testlist.position()) |
|
bleu_metric: 4.559019536899008 |
|
---------- |
|
NL: get the position of item 1 in `testlist` |
|
ref: for i in (i for (i, x) in enumerate(testlist) if (x == 1)): |
|
pass |
|
Output: ▁print(testlist.position()) |
|
bleu_metric: 5.045384493046664 |
|
---------- |
|
NL: get the position of item 1 in `testlist` |
|
ref: gen = (i for (i, x) in enumerate(testlist) if (x == 1)) |
|
Output: ▁print(testlist.position()) |
|
bleu_metric: 8.036848499107174 |
|
---------- |
|
NL: get the position of item `element` in list `testlist` |
|
ref: print(testlist.index(element)) |
|
Output: ▁print(testlist.index(element)) |
|
bleu_metric: 82.42367502646054 |
|
---------- |
|
NL: get the position of item `element` in list `testlist` |
|
ref: gen = (i for (i, x) in enumerate(testlist) if (x == 1)) |
|
Output: ▁print(testlist.index(element)) |
|
bleu_metric: 8.792719200156416 |
|
---------- |
|
NL: find the first element of the tuple with the maximum second element in a list of tuples `lis` |
|
ref: max(lis, key=lambda item: item[1])[0] |
|
Output: max(lis,▁key=lambda x: x[1])[0] |
|
bleu_metric: 60.39435155169263 |
|
---------- |
|
NL: get the item at index 0 from the tuple that has maximum value at index 1 in list `lis` |
|
ref: max(lis, key=itemgetter(1))[0] |
|
Output: max(enumerate(a),▁key=lambda x: x[1])[0] |
|
bleu_metric: 27.274191069381914 |
|
---------- |
|
NL: Make a delay of 1 second |
|
ref: time.sleep(1) |
|
Output: time.sleep(1) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: convert list of tuples `L` to a string |
|
ref: """, """.join('(' + ', '.join(i) + ')' for i in L) |
|
Output: """""".join(l) |
|
bleu_metric: 14.164334116374599 |
|
---------- |
|
NL: Django set default value of field `b` equal to '0000000' |
|
ref: b = models.CharField(max_length=7, default='0000000', editable=False) |
|
Output: super(B,▁self).save(*args,▁**kwargs) |
|
bleu_metric: 8.945053454772305 |
|
---------- |
|
NL: Sort lis `list5` in ascending order based on the degrees value of its elements |
|
ref: sorted(list5, lambda x: (degree(x), x)) |
|
Output: ▁sorted(list5,▁key=lambda x: (int(x)[0], x)) |
|
bleu_metric: 40.802623528764286 |
|
---------- |
|
NL: How do I perform secondary sorting in python? |
|
ref: sorted(list5, key=lambda vertex: (degree(vertex), vertex)) |
|
Output: ▁sorted(list(range(10)),▁key=lambda x: x[1]) |
|
bleu_metric: 15.94000950514835 |
|
---------- |
|
NL: convert a list into a generator object |
|
ref: (n for n in [1, 2, 3, 5]) |
|
Output: ▁list(itertools.product(list(range(10)),▁repeat=4)) |
|
bleu_metric: 8.282282660969601 |
|
---------- |
|
NL: remove elements from list `oldlist` that have an index number mentioned in list `removelist` |
|
ref: newlist = [v for i, v in enumerate(oldlist) if i not in removelist] |
|
Output: [x for x in a▁if x not in b] |
|
bleu_metric: 11.298101090980193 |
|
---------- |
|
NL: Open a file `yourfile.txt` in write mode |
|
ref: f = open('yourfile.txt', 'w') |
|
Output: open('yourfile.txt', 'r') |
|
bleu_metric: 67.09548263862051 |
|
---------- |
|
NL: get attribute 'attr' from object `obj` |
|
ref: getattr(obj, 'attr') |
|
Output: ▁getattr(obj, 'attr') |
|
bleu_metric: 80.70557274927982 |
|
---------- |
|
NL: convert tuple of tuples `(('aa',), ('bb',), ('cc',))` to tuple |
|
ref: from functools import reduce |
|
reduce(lambda a, b: a + b, (('aa',), ('bb',), ('cc',))) |
|
Output: tuple(('aa',), ('bb',), ('cc',)) |
|
bleu_metric: 50.621900464488824 |
|
---------- |
|
NL: convert tuple of tuples `(('aa',), ('bb',), ('cc',))` to list in one line |
|
ref: map(lambda a: a[0], (('aa',), ('bb',), ('cc',))) |
|
Output: ▁list(('aa',), ('bb',), ('cc',)) |
|
bleu_metric: 64.0614517827111 |
|
---------- |
|
NL: Python Pandas: How to replace a characters in a column of a dataframe? |
|
ref: df['range'].replace(',', '-', inplace=True) |
|
Output: df['c'] = df['d'].apply(lambda x: x.replace('-', |
|
bleu_metric: 28.80991254706902 |
|
---------- |
|
NL: unzip the list `[('a', 1), ('b', 2), ('c', 3), ('d', 4)]` |
|
ref: zip(*[('a', 1), ('b', 2), ('c', 3), ('d', 4)]) |
|
Output: zip([('a', 1), ('b', 2), ('c', 3), ('d', 4)] |
|
bleu_metric: 89.10617687473993 |
|
---------- |
|
NL: unzip the list `[('a', 1), ('b', 2), ('c', 3), ('d', 4)]` |
|
ref: zip(*[('a', 1), ('b', 2), ('c', 3), ('d', 4)]) |
|
Output: zip([('a', 1), ('b', 2), ('c', 3), ('d', 4)] |
|
bleu_metric: 89.10617687473993 |
|
---------- |
|
NL: unzip list `original` |
|
ref: result = ([a for (a, b) in original], [b for (a, b) in original]) |
|
Output: zip(*Ordered) |
|
bleu_metric: 0.7985269443272172 |
|
---------- |
|
NL: unzip list `original` and return a generator |
|
ref: result = ((a for (a, b) in original), (b for (a, b) in original)) |
|
Output: ▁return (i for i in range(10)▁if i < 0 for i in range(10)) |
|
bleu_metric: 10.587752134048651 |
|
---------- |
|
NL: unzip list `[('a', 1), ('b', 2), ('c', 3), ('d', 4), ('e', )]` |
|
ref: zip(*[('a', 1), ('b', 2), ('c', 3), ('d', 4), ('e',)]) |
|
Output: zip([('a', 1), ('b', 2), ('c', 3), ('d', 4), |
|
bleu_metric: 73.36039503547302 |
|
---------- |
|
NL: unzip list `[('a', 1), ('b', 2), ('c', 3), ('d', 4), ('e', )]` and fill empty results with None |
|
ref: map(None, *[('a', 1), ('b', 2), ('c', 3), ('d', 4), ('e',)]) |
|
Output: zip(*[('a', 1), ('b', 2), ('c', 3), ('d', 4 |
|
bleu_metric: 64.62811194838824 |
|
---------- |
|
NL: encode `Decimal('3.9')` to a JSON string |
|
ref: json.dumps(Decimal('3.9')) |
|
Output: ▁print(json.dumps({'Temperature': 'Temperature', 'Temperature': 'Temper |
|
bleu_metric: 17.059573701616802 |
|
---------- |
|
NL: Add key "mynewkey" to dictionary `d` with value "mynewvalue" |
|
ref: d['mynewkey'] = 'mynewvalue' |
|
Output: d = {'mynewkey':'mynewvalue','mynewkey':'mynewvalue'} |
|
bleu_metric: 17.976451428761386 |
|
---------- |
|
NL: Add key 'a' to dictionary `data` with value 1 |
|
ref: data.update({'a': 1, }) |
|
Output: data.update({'a': 1, 'b': 1}) |
|
bleu_metric: 63.83240325919925 |
|
---------- |
|
NL: Add key 'a' to dictionary `data` with value 1 |
|
ref: data.update(dict(a=1)) |
|
Output: data.update({'a': 1, 'b': 1}) |
|
bleu_metric: 21.951524426618455 |
|
---------- |
|
NL: Add key 'a' to dictionary `data` with value 1 |
|
ref: data.update(a=1) |
|
Output: data.update({'a': 1, 'b': 1}) |
|
bleu_metric: 21.951524426618455 |
|
---------- |
|
NL: find maximal value in matrix `matrix` |
|
ref: max([max(i) for i in matrix]) |
|
Output: np.max(matrix,▁axis=0) |
|
bleu_metric: 15.233734832972273 |
|
---------- |
|
NL: Round number `answer` to 2 precision after the decimal point |
|
ref: answer = str(round(answer, 2)) |
|
Output: ▁round(answer, 2) |
|
bleu_metric: 49.196255036686594 |
|
---------- |
|
NL: extract ip address from an html string |
|
ref: ip = re.findall('[0-9]+(?:\\.[0-9]+){3}', s) |
|
Output: re.findall('[a-zA-Z0-9-]+', text) |
|
bleu_metric: 20.302505814938357 |
|
---------- |
|
NL: filter dataframe `df` by values in column `A` that appear more than once |
|
ref: df.groupby('A').filter(lambda x: len(x) > 1) |
|
Output: df['A'] = df['B'].filter(df['A']) |
|
bleu_metric: 15.604242268653643 |
|
---------- |
|
NL: append each line in file `myfile` into a list |
|
ref: [x for x in myfile.splitlines() if x != ''] |
|
Output: with open('myfile', 'w').append(line) |
|
bleu_metric: 9.082300379267782 |
|
---------- |
|
NL: Get a list of integers `lst` from a file `filename.txt` |
|
ref: lst = map(int, open('filename.txt').readlines()) |
|
Output: [int(x) for x in open('filename.txt', 'lst')] |
|
bleu_metric: 34.46913316729032 |
|
---------- |
|
NL: add color bar with image `mappable` to plot `plt` |
|
ref: plt.colorbar(mappable=mappable, cax=ax3) |
|
Output: plt.show() |
|
bleu_metric: 11.914378950211951 |
|
---------- |
|
NL: count most frequent 100 words in column 'text' of dataframe `df` |
|
ref: Counter(' '.join(df['text']).split()).most_common(100) |
|
Output: df['text'].str.contains(100) |
|
bleu_metric: 27.101674478567933 |
|
---------- |
|
NL: Python split a string using regex |
|
ref: re.findall('(.+?):(.+?)\\b ?', text) |
|
Output: re.split('\\s+', s) |
|
bleu_metric: 9.868832370006283 |
|
---------- |
|
NL: generate all 2-element subsets of tuple `(1, 2, 3)` |
|
ref: list(itertools.combinations((1, 2, 3), 2)) |
|
Output: ▁list(itertools.product(list(range(1, 2, 3)),▁repeat=4)) |
|
bleu_metric: 39.47641631338841 |
|
---------- |
|
NL: get a value of datetime.today() in the UTC time zone |
|
ref: datetime.now(pytz.utc) |
|
Output: ▁datetime.utcnow().strftime('%Y-%m-%d %H:%M') |
|
bleu_metric: 8.085298080223222 |
|
---------- |
|
NL: Get a new list `list2`by removing empty list from a list of lists `list1` |
|
ref: list2 = [x for x in list1 if x != []] |
|
Output: ▁list2 = [x for x in▁list1▁if x is not▁None] |
|
bleu_metric: 39.5373839333436 |
|
---------- |
|
NL: Create `list2` to contain the lists from list `list1` excluding the empty lists from `list1` |
|
ref: list2 = [x for x in list1 if x] |
|
Output: ▁list2 = [[] for i in▁list1, 0] |
|
bleu_metric: 18.842393723950337 |
|
---------- |
|
NL: Django response with JSON `data` |
|
ref: return HttpResponse(data, mimetype='application/json') |
|
Output: ▁return HttpResponse(json.dumps(data)) |
|
bleu_metric: 29.361568020583483 |
|
---------- |
|
NL: get all text that is not enclosed within square brackets in string `example_str` |
|
ref: re.findall('(.*?)\\[.*?\\]', example_str) |
|
Output: ▁example_str.split('\\[(\\w+)\\]', '\\[\\]]') |
|
bleu_metric: 23.62618715634458 |
|
---------- |
|
NL: Use a regex to get all text in a string `example_str` that is not surrounded by square brackets |
|
ref: re.findall('(.*?)(?:\\[.*?\\]|$)', example_str) |
|
Output: ▁print(re.findall('\\[(\\w+)\\]',▁example_str)) |
|
bleu_metric: 27.808268092146015 |
|
---------- |
|
NL: get whatever is between parentheses as a single match, and any char outside as an individual match in string '(zyx)bc' |
|
ref: re.findall('\\(.+?\\)|\\w', '(zyx)bc') |
|
Output: re.search('(zyx)bc', '(zyx)bc') |
|
bleu_metric: 37.12324840533176 |
|
---------- |
|
NL: match regex '\\((.*?)\\)|(\\w)' with string '(zyx)bc' |
|
ref: re.findall('\\((.*?)\\)|(\\w)', '(zyx)bc') |
|
Output: re.findall('\\((.*?)\\)(\\w)', '(zyx) |
|
bleu_metric: 79.99881739549791 |
|
---------- |
|
NL: match multiple regex patterns with the alternation operator `|` in a string `(zyx)bc` |
|
ref: re.findall('\\(.*?\\)|\\w', '(zyx)bc') |
|
Output: re.findall('(?<=[a-z])(?=[A-Z])', '(zy |
|
bleu_metric: 25.2840740779747 |
|
---------- |
|
NL: formate each string cin list `elements` into pattern '%{0}%' |
|
ref: elements = ['%{0}%'.format(element) for element in elements] |
|
Output: re.sub('[\\W_]+', '', '\\1', '\\1', '\ |
|
bleu_metric: 5.517784889816492 |
|
---------- |
|
NL: Open a background process 'background-process' with arguments 'arguments' |
|
ref: subprocess.Popen(['background-process', 'arguments']) |
|
Output: subprocess.call(['background-process', 'arguments']) |
|
bleu_metric: 85.78928092681434 |
|
---------- |
|
NL: get list of values from dictionary 'mydict' w.r.t. list of keys 'mykeys' |
|
ref: [mydict[x] for x in mykeys] |
|
Output: [d['mykey'] for d in mydict] |
|
bleu_metric: 18.69300079996002 |
|
---------- |
|
NL: convert list `[('Name', 'Joe'), ('Age', 22)]` into a dictionary |
|
ref: dict([('Name', 'Joe'), ('Age', 22)]) |
|
Output: ▁dict([('Name', 'Joe', 'Age', 22)]) |
|
bleu_metric: 80.40514736345938 |
|
---------- |
|
NL: average each two columns of array `data` |
|
ref: data.reshape(-1, j).mean(axis=1).reshape(data.shape[0], -1) |
|
Output: np.mean(np.mean(a.shape[0],▁axis=1)) |
|
bleu_metric: 31.214272516254898 |
|
---------- |
|
NL: double backslash escape all double quotes in string `s` |
|
ref: print(s.encode('unicode-escape').replace('"', '\\"')) |
|
Output: ▁print(s.replace('"', '')) |
|
bleu_metric: 42.801426144397794 |
|
---------- |
|
NL: split a string into a list of words and whitespace |
|
ref: re.split('(\\W+)', s) |
|
Output: [s.split() for s in re.findall('\\S+[^\\S+]+', |
|
bleu_metric: 12.913533075470381 |
|
---------- |
|
NL: plotting stacked barplots on a panda data frame |
|
ref: df.plot(kind='barh', stacked=True) |
|
Output: df.plot(kind='bar',▁stacked=True) |
|
bleu_metric: 66.75075987129311 |
|
---------- |
|
NL: reverse the keys and values in a dictionary `myDictionary` |
|
ref: {i[1]: i[0] for i in list(myDictionary.items())} |
|
Output: ▁dict((v, k) for k, v in myDict.items()) |
|
bleu_metric: 21.05044094649095 |
|
---------- |
|
NL: finding the index of elements containing substring 'how' and 'what' in a list of strings 'myList'. |
|
ref: [i for i, j in enumerate(myList) if 'how' in j.lower() or 'what' in j.lower()] |
|
Output: [item for item in myList▁if 'how' in item] |
|
bleu_metric: 12.757789554746044 |
|
---------- |
|
NL: check if object `obj` is a string |
|
ref: isinstance(obj, str) |
|
Output: isinstance(obj, str) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: check if object `o` is a string |
|
ref: isinstance(o, str) |
|
Output: isinstance(o, str) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: check if object `o` is a string |
|
ref: (type(o) is str) |
|
Output: isinstance(o, str) |
|
bleu_metric: 26.78284959130086 |
|
---------- |
|
NL: check if object `o` is a string |
|
ref: isinstance(o, str) |
|
Output: isinstance(o, str) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: check if `obj_to_test` is a string |
|
ref: isinstance(obj_to_test, str) |
|
Output: isinstance(obj_to_test, str) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: append list `list1` to `list2` |
|
ref: list2.extend(list1) |
|
Output: ▁list2 = [[] for i in range(1)] |
|
bleu_metric: 9.672649511413093 |
|
---------- |
|
NL: append list `mylog` to `list1` |
|
ref: list1.extend(mylog) |
|
Output: ▁list1.append(mylog) |
|
bleu_metric: 45.18010018049224 |
|
---------- |
|
NL: append list `a` to `c` |
|
ref: c.extend(a) |
|
Output: a.append(c) |
|
bleu_metric: 30.21375397356768 |
|
---------- |
|
NL: append items in list `mylog` to `list1` |
|
ref: for line in mylog: |
|
list1.append(line) |
|
Output: ▁list1.append({'mylog': [1, 2, 3, 4], 'list1': [1, 2, 3, 4]}) |
|
bleu_metric: 11.110969989860408 |
|
---------- |
|
NL: append a tuple of elements from list `a` with indexes '[0][0] [0][2]' to list `b` |
|
ref: b.append((a[0][0], a[0][2])) |
|
Output: [(i, j) for i, j in zip(a, b)] |
|
bleu_metric: 9.575085238714179 |
|
---------- |
|
NL: Initialize `SECRET_KEY` in flask config with `Your_secret_string ` |
|
ref: app.config['SECRET_KEY'] = 'Your_secret_string' |
|
Output: {'SECRET_KEY': 'Your_SECURITY_string'} |
|
bleu_metric: 20.33038389239877 |
|
---------- |
|
NL: unpack a series of tuples in pandas into a DataFrame with column names 'out-1' and 'out-2' |
|
ref: pd.DataFrame(out.tolist(), columns=['out-1', 'out-2'], index=out.index) |
|
Output: pd.concat([df1, df2],▁axis=1) |
|
bleu_metric: 5.527540935225947 |
|
---------- |
|
NL: find the index of an element 'MSFT' in a list `stocks_list` |
|
ref: [x for x in range(len(stocks_list)) if stocks_list[x] == 'MSFT'] |
|
Output: from functools import▁reduce▁reduce(lambda s: s.index(s.encode('latin1'))▁if s.index |
|
bleu_metric: 7.022952541634667 |
|
---------- |
|
NL: rotate the xtick labels of matplotlib plot `ax` by `45` degrees to make long labels readable |
|
ref: ax.set_xticklabels(labels, rotation=45) |
|
Output: ax.set_xticklabels(ax.xaxis.get_majorticklabels(45)) |
|
bleu_metric: 30.620490882364876 |
|
---------- |
|
NL: remove symbols from a string `s` |
|
ref: re.sub('[^\\w]', ' ', s) |
|
Output: re.sub('(?<=[a-z])(?=[A-Z])', '', s) |
|
bleu_metric: 35.3639760061202 |
|
---------- |
|
NL: Get the current directory of a script |
|
ref: os.path.basename(os.path.dirname(os.path.realpath(__file__))) |
|
Output: os.path.dirname(os.path.realpath(__file__)) |
|
bleu_metric: 63.37967287681905 |
|
---------- |
|
NL: Find octal characters matches from a string `str` using regex |
|
ref: print(re.findall("'\\\\[0-7]{1,3}'", str)) |
|
Output: re.findall(pattern,▁string).findall(pattern, re.UNICODE) |
|
bleu_metric: 13.635660702165275 |
|
---------- |
|
NL: split string `input` based on occurrences of regex pattern '[ ](?=[A-Z]+\\b)' |
|
ref: re.split('[ ](?=[A-Z]+\\b)', input) |
|
Output: input.split('[ ](?=[A-Z]+\b)') |
|
bleu_metric: 75.20601490106428 |
|
---------- |
|
NL: Split string `input` at every space followed by an upper-case letter |
|
ref: re.split('[ ](?=[A-Z])', input) |
|
Output: input.split('.')[1] |
|
bleu_metric: 16.636072310752336 |
|
---------- |
|
NL: send multipart encoded file `files` to url `url` with headers `headers` and metadata `data` |
|
ref: r = requests.post(url, files=files, headers=headers, data=data) |
|
Output: ▁urllib.request.urlopen(url,▁headers=headers,▁headers=data) |
|
bleu_metric: 33.09468095382839 |
|
---------- |
|
NL: write bytes `bytes_` to a file `filename` in python 3 |
|
ref: open('filename', 'wb').write(bytes_) |
|
Output: open('filename', 'rb').write(bytes(bytes_)) |
|
bleu_metric: 60.59827460443867 |
|
---------- |
|
NL: get a list from a list `lst` with values mapped into a dictionary `dct` |
|
ref: [dct[k] for k in lst] |
|
Output: ▁list(itertools.chain.from_iterable(lst)) |
|
bleu_metric: 10.511846841633776 |
|
---------- |
|
NL: find duplicate names in column 'name' of the dataframe `x` |
|
ref: x.set_index('name').index.get_duplicates() |
|
Output: df.groupby('name')['x'].cumsum() |
|
bleu_metric: 34.11488281065382 |
|
---------- |
|
NL: truncate float 1.923328437452 to 3 decimal places |
|
ref: round(1.923328437452, 3) |
|
Output: ▁float('{0:.2f}'.format(env)) |
|
bleu_metric: 9.629943614188138 |
|
---------- |
|
NL: sort list `li` in descending order based on the date value in second element of each list in list `li` |
|
ref: sorted(li, key=lambda x: datetime.strptime(x[1], '%d/%m/%Y'), reverse=True) |
|
Output: ▁sorted(li,▁key=lambda x: (x[1], x[0])) |
|
bleu_metric: 31.993666822129963 |
|
---------- |
|
NL: place the radial ticks in plot `ax` at 135 degrees |
|
ref: ax.set_rlabel_position(135) |
|
Output: ax.set_visible(False) |
|
bleu_metric: 32.17294420803808 |
|
---------- |
|
NL: check if path `my_path` is an absolute path |
|
ref: os.path.isabs(my_path) |
|
Output: ▁print(os.path.abspath(__file__)) |
|
bleu_metric: 29.256127307315065 |
|
---------- |
|
NL: get number of keys in dictionary `yourdict` |
|
ref: len(list(yourdict.keys())) |
|
Output: len(yourdict.keys()) |
|
bleu_metric: 63.70964381207871 |
|
---------- |
|
NL: count the number of keys in dictionary `yourdictfile` |
|
ref: len(set(open(yourdictfile).read().split())) |
|
Output: len(yourdictfile.values()) |
|
bleu_metric: 13.938681520780069 |
|
---------- |
|
NL: pandas dataframe get first row of each group by 'id' |
|
ref: df.groupby('id').first() |
|
Output: df['id'] = df['id'].apply(lambda x: x.tolist()) |
|
bleu_metric: 12.991916506579942 |
|
---------- |
|
NL: split a list in first column into multiple columns keeping other columns as well in pandas data frame |
|
ref: pd.concat([df[0].apply(pd.Series), df[1]], axis=1) |
|
Output: df['A'].str.split(',', 1)['B'].str.split(',') |
|
bleu_metric: 9.64535051675695 |
|
---------- |
|
NL: extract attributes 'src="js/([^"]*\\bjquery\\b[^"]*)"' from string `data` |
|
ref: re.findall('src="js/([^"]*\\bjquery\\b[^"]*)"', data) |
|
Output: re.findall('\\bjquery\\b[^"]*)', data) |
|
bleu_metric: 51.296752626995115 |
|
---------- |
|
NL: Sum integers contained in strings in list `['', '3.4', '', '', '1.0']` |
|
ref: sum(int(float(item)) for item in [_f for _f in ['', '3.4', '', '', '1.0'] if _f]) |
|
Output: ▁sum(map(int, ['', '3.4', '', '1.0'])) |
|
bleu_metric: 45.29937105346175 |
|
---------- |
|
NL: Call a subprocess with arguments `c:\\Program Files\\VMware\\VMware Server\\vmware-cmd.bat` that may contain spaces |
|
ref: subprocess.Popen(['c:\\Program Files\\VMware\\VMware Server\\vmware-cmd.bat']) |
|
Output: subprocess.call(['c:\\Programs\\VMware\\VMware',▁shell=T |
|
bleu_metric: 37.84850418718211 |
|
---------- |
|
NL: reverse a priority queue `q` in python without using classes |
|
ref: q.put((-n, n)) |
|
Output: time.sleep(1) |
|
bleu_metric: 13.597602315271134 |
|
---------- |
|
NL: make a barplot of data in column `group` of dataframe `df` colour-coded according to list `color` |
|
ref: df['group'].plot(kind='bar', color=['r', 'g', 'b', 'r', 'g', 'b', 'r']) |
|
Output: plt.show() |
|
bleu_metric: 0.030120959708599737 |
|
---------- |
|
NL: find all matches of regex pattern '([a-fA-F\\d]{32})' in string `data` |
|
ref: re.findall('([a-fA-F\\d]{32})', data) |
|
Output: re.findall('([a-fA-F\\d]{32})', data) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: Get the length of list `my_list` |
|
ref: len(my_list) |
|
Output: len(my_list) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: Getting the length of array `l` |
|
ref: len(l) |
|
Output: len(my_array) |
|
bleu_metric: 45.180100180492246 |
|
---------- |
|
NL: Getting the length of array `s` |
|
ref: len(s) |
|
Output: len(s) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: Getting the length of `my_tuple` |
|
ref: len(my_tuple) |
|
Output: len(my_tuple) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: Getting the length of `my_string` |
|
ref: len(my_string) |
|
Output: len(my_string) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: remove escape character from string "\\a" |
|
ref: """\\a""".decode('string_escape') |
|
Output: """\\a""".decode('string_escape') |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: replace each 'a' with 'b' and each 'b' with 'a' in the string 'obama' in a single pass. |
|
ref: """obama""".replace('a', '%temp%').replace('b', 'a').replace('%temp%', 'b') |
|
Output: """""".join(['a', 'b', 'a']) |
|
bleu_metric: 28.029141246256657 |
|
---------- |
|
NL: remove directory tree '/folder_name' |
|
ref: shutil.rmtree('/folder_name') |
|
Output: os.path.dirname('/folder_name') |
|
bleu_metric: 57.608442016038964 |
|
---------- |
|
NL: create a new column `weekday` in pandas data frame `data` based on the values in column `my_dt` |
|
ref: data['weekday'] = data['my_dt'].apply(lambda x: x.weekday()) |
|
Output: data.apply(lambda x: x['weekday'].str.contains(x['my_dt' |
|
bleu_metric: 51.68669917653163 |
|
---------- |
|
NL: reverse sort Counter `x` by values |
|
ref: sorted(x, key=x.get, reverse=True) |
|
Output: ▁sorted(x,▁key=lambda x: x[::-1]) |
|
bleu_metric: 21.27988282044161 |
|
---------- |
|
NL: reverse sort counter `x` by value |
|
ref: sorted(list(x.items()), key=lambda pair: pair[1], reverse=True) |
|
Output: ▁sorted(x,▁key=itemgetter(1), reverse=True) |
|
bleu_metric: 28.177860103739523 |
|
---------- |
|
NL: append a numpy array 'b' to a numpy array 'a' |
|
ref: np.vstack((a, b)) |
|
Output: ▁numpy.append(a, b) |
|
bleu_metric: 46.92470064105599 |
|
---------- |
|
NL: numpy concatenate two arrays `a` and `b` along the first axis |
|
ref: print(concatenate((a, b), axis=0)) |
|
Output: np.concatenate((a, b),▁axis=0) |
|
bleu_metric: 65.60930058975354 |
|
---------- |
|
NL: numpy concatenate two arrays `a` and `b` along the second axis |
|
ref: print(concatenate((a, b), axis=1)) |
|
Output: np.concatenate((a, b),▁axis=0) |
|
bleu_metric: 55.60336961016132 |
|
---------- |
|
NL: numpy concatenate two arrays `a` and `b` along the first axis |
|
ref: c = np.r_[(a[None, :], b[None, :])] |
|
Output: np.concatenate((a, b),▁axis=0) |
|
bleu_metric: 10.756284573187752 |
|
---------- |
|
NL: numpy concatenate two arrays `a` and `b` along the first axis |
|
ref: np.array((a, b)) |
|
Output: np.concatenate((a, b),▁axis=0) |
|
bleu_metric: 41.896825433302276 |
|
---------- |
|
NL: fetch address information for host 'google.com' ion port 80 |
|
ref: print(socket.getaddrinfo('google.com', 80)) |
|
Output: db.request.urlretrieve('google.com') |
|
bleu_metric: 39.00756812161481 |
|
---------- |
|
NL: add a column 'day' with value 'sat' to dataframe `df` |
|
ref: df.xs('sat', level='day', drop_level=False) |
|
Output: df['Date'] = df['Date'].apply(lambda x: x.to_date( |
|
bleu_metric: 7.575731225158963 |
|
---------- |
|
NL: return a 401 unauthorized in django |
|
ref: return HttpResponse('Unauthorized', status=401) |
|
Output: MyModel.objects.filter(author__id=1) |
|
bleu_metric: 14.294845713017917 |
|
---------- |
|
NL: Flask set folder 'wherever' as the default template folder |
|
ref: Flask(__name__, template_folder='wherever') |
|
Output: ▁app.run(debug=True) |
|
bleu_metric: 17.03318603763928 |
|
---------- |
|
NL: How do I INSERT INTO t1 (SELECT * FROM t2) in SQLAlchemy? |
|
ref: session.execute('INSERT INTO t1 (SELECT * FROM t2)') |
|
Output: ▁session.execute('INSERT▁INTO t1 (SELECT *▁FROM t2)') |
|
bleu_metric: 63.83964846132485 |
|
---------- |
|
NL: sort a list of lists 'c2' such that third row comes first |
|
ref: c2.sort(key=lambda row: row[2]) |
|
Output: c2.sort(key=lambda x: x[0]) |
|
bleu_metric: 55.33409598501608 |
|
---------- |
|
NL: Sorting a list of lists in Python |
|
ref: c2.sort(key=lambda row: (row[2], row[1], row[0])) |
|
Output: ▁sorted(a,▁key=lambda x: x.index(x)) |
|
bleu_metric: 13.258555426461873 |
|
---------- |
|
NL: Sorting a list of lists in Python |
|
ref: c2.sort(key=lambda row: (row[2], row[1])) |
|
Output: ▁sorted(a,▁key=lambda x: x.index(x)) |
|
bleu_metric: 17.024322156140222 |
|
---------- |
|
NL: set font `Arial` to display non-ascii characters in matplotlib |
|
ref: matplotlib.rc('font', **{'sans-serif': 'Arial', 'family': 'sans-serif'}) |
|
Output: plt.show() |
|
bleu_metric: 0.3669484097406089 |
|
---------- |
|
NL: Convert DateTime column 'date' of pandas dataframe 'df' to ordinal |
|
ref: df['date'].apply(lambda x: x.toordinal()) |
|
Output: df['date'] = df['date'].dt.to_datetime(df['date'] |
|
bleu_metric: 28.326302347195153 |
|
---------- |
|
NL: get html source of Selenium WebElement `element` |
|
ref: element.get_attribute('innerHTML') |
|
Output: ▁driver.find_element_by_xpath("//a[@id='a']//a[@id |
|
bleu_metric: 7.9290265068413746 |
|
---------- |
|
NL: Get the integer location of a key `bob` in a pandas data frame |
|
ref: df.index.get_loc('bob') |
|
Output: df.loc[df['bob'].index] |
|
bleu_metric: 22.894156860669913 |
|
---------- |
|
NL: open a 'gnome' terminal from python script and run 'sudo apt-get update' command. |
|
ref: os.system('gnome-terminal -e \'bash -c "sudo apt-get update; exec bash"\'') |
|
Output: os.system('sudo apt-get update') |
|
bleu_metric: 21.20024487612511 |
|
---------- |
|
NL: add an item with key 'third_key' and value 1 to an dictionary `my_dict` |
|
ref: my_dict.update({'third_key': 1}) |
|
Output: ▁dict((k, v) for k, v in my_dict.items()▁if v[0] == 1) |
|
bleu_metric: 7.261813302549417 |
|
---------- |
|
NL: declare an array |
|
ref: my_list = [] |
|
Output: intarray = [] |
|
bleu_metric: 75.98356856515926 |
|
---------- |
|
NL: Insert item `12` to a list `my_list` |
|
ref: my_list.append(12) |
|
Output: my_list.insert(0, 12) |
|
bleu_metric: 32.46679154750989 |
|
---------- |
|
NL: add an entry 'wuggah' at the beginning of list `myList` |
|
ref: myList.insert(0, 'wuggah') |
|
Output: ['wuggah', 'wuggah', 'wuggah'] |
|
bleu_metric: 23.961829057131983 |
|
---------- |
|
NL: convert a hex-string representation to actual bytes |
|
ref: """\\xF3\\xBE\\x80\\x80""".replace('\\x', '').decode('hex') |
|
Output: ▁struct.unpack('<I',▁struct.pack('>I', 16))[0] |
|
bleu_metric: 6.258020733367848 |
|
---------- |
|
NL: select the last column of dataframe `df` |
|
ref: df[df.columns[-1]] |
|
Output: df.iloc[:, (-1)] |
|
bleu_metric: 20.78060434846712 |
|
---------- |
|
NL: get the first value from dataframe `df` where column 'Letters' is equal to 'C' |
|
ref: df.loc[df['Letters'] == 'C', 'Letters'].values[0] |
|
Output: df['Letters'].str.contains('C') |
|
bleu_metric: 27.69697733631702 |
|
---------- |
|
NL: converting two lists `[1, 2, 3]` and `[4, 5, 6]` into a matrix |
|
ref: np.column_stack(([1, 2, 3], [4, 5, 6])) |
|
Output: ▁matrix([[1, 2, 3], [4, 5, 6])) |
|
bleu_metric: 79.78897056262763 |
|
---------- |
|
NL: get the type of `i` |
|
ref: type(i) |
|
Output: type(i) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: determine the type of variable `v` |
|
ref: type(v) |
|
Output: type(v) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: determine the type of variable `v` |
|
ref: type(v) |
|
Output: type(v) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: determine the type of variable `v` |
|
ref: type(v) |
|
Output: type(v) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: determine the type of variable `v` |
|
ref: type(v) |
|
Output: type(v) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: get the type of variable `variable_name` |
|
ref: print(type(variable_name)) |
|
Output: ▁globals()['factor'] |
|
bleu_metric: 13.54599427337814 |
|
---------- |
|
NL: get the 5th item of a generator |
|
ref: next(itertools.islice(range(10), 5, 5 + 1)) |
|
Output: ▁list(itertools.islice(it, 5)) |
|
bleu_metric: 31.347458595184502 |
|
---------- |
|
NL: Print a string `word` with string format |
|
ref: print('"{}"'.format(word)) |
|
Output: ▁print(word.replace(',', '')) |
|
bleu_metric: 22.31180367999676 |
|
---------- |
|
NL: join a list of strings `list` using a space ' ' |
|
ref: """ """.join(list) |
|
Output: """ """.join(map(str,▁list)) |
|
bleu_metric: 56.79161104357995 |
|
---------- |
|
NL: create list `y` containing two empty lists |
|
ref: y = [[] for n in range(2)] |
|
Output: y = [[] for i in range(2)] |
|
bleu_metric: 80.03203203844998 |
|
---------- |
|
NL: read a file 'C:/name/MyDocuments/numbers' into a list `data` |
|
ref: data = [line.strip() for line in open('C:/name/MyDocuments/numbers', 'r')] |
|
Output: data = [line.read() for▁line in open('C:/name/MyDocuments/numbers')] |
|
bleu_metric: 69.7712347922743 |
|
---------- |
|
NL: delete all occurrences of character 'i' in string 'it is icy' |
|
ref: """""".join([char for char in 'it is icy' if char != 'i']) |
|
Output: re.sub('i', 'it is icy') |
|
bleu_metric: 15.99248714366856 |
|
---------- |
|
NL: delete all instances of a character 'i' in a string 'it is icy' |
|
ref: re.sub('i', '', 'it is icy') |
|
Output: re.sub('i', '', 'it is icy') |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: delete all characters "i" in string "it is icy" |
|
ref: """it is icy""".replace('i', '') |
|
Output: """it is icy""".replace('i', '') |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: How to delete all instances of a character in a string in python? |
|
ref: """""".join([char for char in 'it is icy' if char != 'i']) |
|
Output: re.sub('[^a-zA-Z]*', '', text) |
|
bleu_metric: 7.866954533441649 |
|
---------- |
|
NL: Drop rows of pandas dataframe `df` having NaN in column at index "1" |
|
ref: df.dropna(subset=[1]) |
|
Output: df.dropna(df.loc[:, (None)],▁axis=1) |
|
bleu_metric: 20.82198320914845 |
|
---------- |
|
NL: get elements from list `myList`, that have a field `n` value 30 |
|
ref: [x for x in myList if x.n == 30] |
|
Output: [i for i in myList▁if n == 30] |
|
bleu_metric: 45.06143230242354 |
|
---------- |
|
NL: converting list of strings `intstringlist` to list of integer `nums` |
|
ref: nums = [int(x) for x in intstringlist] |
|
Output: [int(x) for x in intstringlist] |
|
bleu_metric: 83.9234989944319 |
|
---------- |
|
NL: convert list of string numbers into list of integers |
|
ref: map(int, eval(input('Enter the unfriendly numbers: '))) |
|
Output: [int(x) for x in lst] |
|
bleu_metric: 7.290792403968443 |
|
---------- |
|
NL: print "." without newline |
|
ref: sys.stdout.write('.') |
|
Output: ▁sys.stdout.write('.') |
|
bleu_metric: 83.85766789076257 |
|
---------- |
|
NL: round off the float that is the product of `2.52 * 100` and convert it to an int |
|
ref: int(round(2.51 * 100)) |
|
Output: int(round(1.0 *▁100)) |
|
bleu_metric: 46.82568791024402 |
|
---------- |
|
NL: Find all files in directory "/mydir" with extension ".txt" |
|
ref: os.chdir('/mydir') |
|
for file in glob.glob('*.txt'): |
|
pass |
|
Output: for▁file in os.listdir('/mydir'):▁if▁file.endswith('.txt'):▁pass |
|
bleu_metric: 37.56995795800578 |
|
---------- |
|
NL: Find all files in directory "/mydir" with extension ".txt" |
|
ref: for file in os.listdir('/mydir'): |
|
if file.endswith('.txt'): |
|
pass |
|
Output: for▁file in os.listdir('/mydir'):▁if▁file.endswith('.txt'):▁pass |
|
bleu_metric: 71.95956498085113 |
|
---------- |
|
NL: Find all files in directory "/mydir" with extension ".txt" |
|
ref: for (root, dirs, files) in os.walk('/mydir'): |
|
for file in files: |
|
if file.endswith('.txt'): |
|
pass |
|
Output: for▁file in os.listdir('/mydir'):▁if▁file.endswith('.txt'):▁pass |
|
bleu_metric: 47.1684455439837 |
|
---------- |
|
NL: plot dataframe `df` without a legend |
|
ref: df.plot(legend=False) |
|
Output: plt.show() |
|
bleu_metric: 20.034704329441453 |
|
---------- |
|
NL: loop through the IP address range "192.168.x.x" |
|
ref: for i in range(256): |
|
for j in range(256): |
|
ip = ('192.168.%d.%d' % (i, j)) |
|
print(ip) |
|
Output: for i in range('192.168.x.x'):▁pass |
|
bleu_metric: 14.238794877552813 |
|
---------- |
|
NL: loop through the IP address range "192.168.x.x" |
|
ref: for (i, j) in product(list(range(256)), list(range(256))): |
|
pass |
|
Output: for i in range('192.168.x.x'):▁pass |
|
bleu_metric: 7.916713848850043 |
|
---------- |
|
NL: loop through the IP address range "192.168.x.x" |
|
ref: generator = iter_iprange('192.168.1.1', '192.168.255.255', step=1) |
|
Output: for i in range('192.168.x.x'):▁pass |
|
bleu_metric: 18.291291695991816 |
|
---------- |
|
NL: Sum the corresponding decimal values for binary values of each boolean element in list `x` |
|
ref: sum(1 << i for i, b in enumerate(x) if b) |
|
Output: ▁sum([int(x) for x in▁list(bool(x))]) |
|
bleu_metric: 14.071964689317513 |
|
---------- |
|
NL: write multiple strings `line1`, `line2` and `line3` in one line in a file `target` |
|
ref: target.write('%r\n%r\n%r\n' % (line1, line2, line3)) |
|
Output: f.write(line1,▁line2 +▁line3.split(',')) |
|
bleu_metric: 16.116608915070366 |
|
---------- |
|
NL: Convert list of lists `data` into a flat list |
|
ref: [y for x in data for y in (x if isinstance(x, list) else [x])] |
|
Output: [j for i in data for j in i] |
|
bleu_metric: 9.344244386017191 |
|
---------- |
|
NL: Print new line character as `\n` in a string `foo\nbar` |
|
ref: print('foo\nbar'.encode('string_escape')) |
|
Output: """foo\nbar""".replace('\n') |
|
bleu_metric: 32.49189152106538 |
|
---------- |
|
NL: remove last comma character ',' in string `s` |
|
ref: """""".join(s.rsplit(',', 1)) |
|
Output: s = s.replace(',', '') |
|
bleu_metric: 24.4545047029932 |
|
---------- |
|
NL: calculate the mean of each element in array `x` with the element previous to it |
|
ref: (x[1:] + x[:-1]) / 2 |
|
Output: np.mean(x) |
|
bleu_metric: 6.656592803413297 |
|
---------- |
|
NL: get an array of the mean of each two consecutive values in numpy array `x` |
|
ref: x[:-1] + (x[1:] - x[:-1]) / 2 |
|
Output: ▁numpy.array([[1, 2], [2, 4]]) |
|
bleu_metric: 10.64536882179483 |
|
---------- |
|
NL: load data containing `utf-8` from file `new.txt` into numpy array `arr` |
|
ref: arr = numpy.fromiter(codecs.open('new.txt', encoding='utf-8'), dtype='<U2') |
|
Output: arr = np.loadtxt(new.txt) |
|
bleu_metric: 4.099273792559235 |
|
---------- |
|
NL: reverse sort list of dicts `l` by value for key `time` |
|
ref: l = sorted(l, key=itemgetter('time'), reverse=True) |
|
Output: ▁sorted(l,▁key=lambda t: (t[0], t[0])) |
|
bleu_metric: 18.627639656696825 |
|
---------- |
|
NL: Sort a list of dictionary `l` based on key `time` in descending order |
|
ref: l = sorted(l, key=lambda a: a['time'], reverse=True) |
|
Output: ▁sorted(l,▁key=lambda x: (-int(x[1], x[0]), reverse=True)) |
|
bleu_metric: 26.765226160005685 |
|
---------- |
|
NL: get rows of dataframe `df` that match regex '(Hel|Just)' |
|
ref: df.loc[df[0].str.contains('(Hel|Just)')] |
|
Output: df.groupby(['(HelJust)']).groupby(df.index).groupby('( |
|
bleu_metric: 18.334946520773087 |
|
---------- |
|
NL: find the string in `your_string` between two special characters "[" and "]" |
|
ref: re.search('\\[(.*)\\]', your_string).group(1) |
|
Output: """""".join(your_string.split('[" and "]')) |
|
bleu_metric: 10.973111462459018 |
|
---------- |
|
NL: How to create a list of date string in 'yyyymmdd' format with Python Pandas? |
|
ref: [d.strftime('%Y%m%d') for d in pandas.date_range('20130226', '20130302')] |
|
Output: df['Date'] = df['Date'].strftime('%Y-%m-%d |
|
bleu_metric: 22.301119377771585 |
|
---------- |
|
NL: count number of times string 'brown' occurred in string 'The big brown fox is brown' |
|
ref: """The big brown fox is brown""".count('brown') |
|
Output: """""".join( len(s) for s in s.split(',')) |
|
bleu_metric: 25.567957494892184 |
|
---------- |
|
NL: decode json string `request.body` to python dict |
|
ref: json.loads(request.body) |
|
Output: json.loads(request.body) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: download the file from url `url` and save it under file `file_name` |
|
ref: urllib.request.urlretrieve(url, file_name) |
|
Output: ▁urllib.request.urlretrieve('http://stackoverflow.com/',▁filename) |
|
bleu_metric: 27.219913803267488 |
|
---------- |
|
NL: split string `text` by space |
|
ref: text.split() |
|
Output: text.split(' ', 1) |
|
bleu_metric: 40.3527863746399 |
|
---------- |
|
NL: split string `text` by "," |
|
ref: text.split(',') |
|
Output: text.split(',') |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: Split string `line` into a list by whitespace |
|
ref: line.split() |
|
Output: ▁line = [line.split() for▁line in▁line.split()] |
|
bleu_metric: 21.08445456905127 |
|
---------- |
|
NL: replace dot characters '.' associated with ascii letters in list `s` with space ' ' |
|
ref: [re.sub('(?<!\\d)\\.(?!\\d)', ' ', i) for i in s] |
|
Output: re.sub('.{2,}', '.', s) |
|
bleu_metric: 12.97619575634719 |
|
---------- |
|
NL: sort list `list_of_strings` based on second index of each string `s` |
|
ref: sorted(list_of_strings, key=lambda s: s.split(',')[1]) |
|
Output: ▁sorted(list_of_strings,▁key=lambda x: x[1]) |
|
bleu_metric: 36.27963251722101 |
|
---------- |
|
NL: call multiple bash function ‘vasp’ and ‘tee tee_output’ using ‘|’ |
|
ref: subprocess.check_call('vasp | tee tee_output', shell=True) |
|
Output: subprocess.call(['bash', 'vaasp', 'teeTe_output']) |
|
bleu_metric: 12.91802583371725 |
|
---------- |
|
NL: eliminate all strings from list `lst` |
|
ref: [element for element in lst if isinstance(element, int)] |
|
Output: [x for x in lst▁if x is not▁None] |
|
bleu_metric: 15.844501337268929 |
|
---------- |
|
NL: get all the elements except strings from the list 'lst'. |
|
ref: [element for element in lst if not isinstance(element, str)] |
|
Output: [i for i, x in enumerate(lst)▁if x is not▁None] |
|
bleu_metric: 12.208428349950823 |
|
---------- |
|
NL: Sort a list of dictionaries `list_to_be_sorted` by the value of the dictionary key `name` |
|
ref: newlist = sorted(list_to_be_sorted, key=lambda k: k['name']) |
|
Output: ▁sorted(list_to_be_sorted,▁key=lambda x: x['name']) |
|
bleu_metric: 51.83282721440023 |
|
---------- |
|
NL: sort a list of dictionaries `l` by values in key `name` in descending order |
|
ref: newlist = sorted(l, key=itemgetter('name'), reverse=True) |
|
Output: ▁sorted(l,▁key=lambda x: x[name]['name'], reverse=True) |
|
bleu_metric: 35.357497307303696 |
|
---------- |
|
NL: How do I sort a list of dictionaries by values of the dictionary in Python? |
|
ref: list_of_dicts.sort(key=operator.itemgetter('name')) |
|
Output: ▁sorted(lst,▁key=lambda d: d['name'], reverse=True) |
|
bleu_metric: 13.121551386461338 |
|
---------- |
|
NL: How do I sort a list of dictionaries by values of the dictionary in Python? |
|
ref: list_of_dicts.sort(key=operator.itemgetter('age')) |
|
Output: ▁sorted(lst,▁key=lambda d: d['name'], reverse=True) |
|
bleu_metric: 9.429254736980933 |
|
---------- |
|
NL: How to sort a Dataframe by the ocurrences in a column in Python (pandas) |
|
ref: df.groupby('prots').sum().sort('scores', ascending=False) |
|
Output: df.sort_values(['probe', 'probe'],▁ascending=[True, False |
|
bleu_metric: 11.147098723841475 |
|
---------- |
|
NL: join together with "," elements inside a list indexed with 'category' within a dictionary `trans` |
|
ref: """,""".join(trans['category']) |
|
Output: [(k, v) for k, v in zip(trans.items())] |
|
bleu_metric: 9.849349468888722 |
|
---------- |
|
NL: concatenate array of strings `['A', 'B', 'C', 'D']` into a string |
|
ref: """""".join(['A', 'B', 'C', 'D']) |
|
Output: """""".join(['A', 'B', 'C', 'D']) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: get json data from restful service 'url' |
|
ref: json.load(urllib.request.urlopen('url')) |
|
Output: ▁print(json.dumps(data)) |
|
bleu_metric: 17.707238844430016 |
|
---------- |
|
NL: Remove all strings from a list a strings `sents` where the values starts with `@$\t` or `#` |
|
ref: [x for x in sents if not x.startswith('@$\t') and not x.startswith('#')] |
|
Output: [s.replace('@$\t', '#') for s in lst] |
|
bleu_metric: 30.77566449227554 |
|
---------- |
|
NL: django filter by hour |
|
ref: Entry.objects.filter(pub_date__contains='08:00') |
|
Output: ▁User.objects.filter(date__contains='Europe/Amsterdam') |
|
bleu_metric: 36.6151076865785 |
|
---------- |
|
NL: sort a list of dictionary `list` first by key `points` and then by `time` |
|
ref: list.sort(key=lambda item: (item['points'], item['time'])) |
|
Output: ▁sorted(list,▁key=itemgetter(1), reverse=True) |
|
bleu_metric: 8.768005785989223 |
|
---------- |
|
NL: convert datetime object `(1970, 1, 1)` to seconds |
|
ref: (t - datetime.datetime(1970, 1, 1)).total_seconds() |
|
Output: ▁datetime.datetime.strptime('1970, 1, 1)', '%Y-%m-%d %H:% |
|
bleu_metric: 24.03479325641683 |
|
---------- |
|
NL: insert `_suff` before the file extension in `long.file.name.jpg` or replace `_a` with `suff` if it precedes the extension. |
|
ref: re.sub('(\\_a)?\\.([^\\.]*)$', '_suff.\\2', 'long.file.name.jpg') |
|
Output: ▁print(os.path.insert(0, 'ng.file.name.jpg','suff','suff')) |
|
bleu_metric: 21.88455177736455 |
|
---------- |
|
NL: reload a module `module` |
|
ref: import imp |
|
imp.reload(module) |
|
Output: module.reload(module) |
|
bleu_metric: 63.1914561891573 |
|
---------- |
|
NL: Convert integer `number` into an unassigned integer |
|
ref: struct.unpack('H', struct.pack('h', number)) |
|
Output: int('0', '0', '0', '0', '0', '0', '0', |
|
bleu_metric: 8.036517486170723 |
|
---------- |
|
NL: convert int values in list `numlist` to float |
|
ref: numlist = [float(x) for x in numlist] |
|
Output: ▁struct.unpack('f',▁struct.pack('f', numlist))[0] |
|
bleu_metric: 7.592939129822969 |
|
---------- |
|
NL: write dataframe `df`, excluding index, to a csv file |
|
ref: df.to_csv(filename, index=False) |
|
Output: df.to_csv('test.csv', index=False) |
|
bleu_metric: 53.070741098514354 |
|
---------- |
|
NL: convert a urllib unquoted string `unescaped` to a json data `json_data` |
|
ref: json_data = json.loads(unescaped) |
|
Output: json_data = json.loads(unescaped) |
|
bleu_metric: 100.0 |
|
---------- |
|
NL: Create a list containing all ascii characters as its elements |
|
ref: [chr(i) for i in range(127)] |
|
Output: [''.join(chr(i) for i in range(100)) for i in range(100)] |
|
bleu_metric: 37.55605602853702 |
|
---------- |
|
NL: write `newFileBytes` to a binary file `newFile` |
|
ref: newFile.write(struct.pack('5B', *newFileBytes)) |
|
Output: ▁newFile.write('newFileBytes') |
|
bleu_metric: 31.340585122385452 |
|
---------- |
|
NL: python regex - check for a capital letter with a following lowercase in string `string` |
|
ref: re.sub('^[A-Z0-9]*(?![a-z])', '', string) |
|
Output: re.findall('[^a-zA-Z]*', s) |
|
bleu_metric: 12.573478351903535 |
|
---------- |
|
NL: get the last key of dictionary `dict` |
|
ref: list(dict.keys())[-1] |
|
Output: ▁dict((k, v) for k, v in▁list(dict.items())) |
|
bleu_metric: 18.62763965669682 |
|
---------- |
|
NL: write line "hi there" to file `f` |
|
ref: print('hi there', file=f) |
|
Output: f.write('hi there', 'w').write('\n'.join(f)) |
|
bleu_metric: 23.887527917609027 |
|
---------- |
|
NL: write line "hi there" to file `myfile` |
|
ref: f = open('myfile', 'w') |
|
f.write('hi there\n') |
|
Output: ▁file.write('hi there', myfile) |
|
bleu_metric: 24.08679351737605 |
|
---------- |
|
NL: write line "Hello" to file `somefile.txt` |
|
ref: with open('somefile.txt', 'a') as the_file: |
|
the_file.write('Hello\n') |
|
Output: ▁somefile.txt('Hello') |
|
bleu_metric: 9.14922552845114 |
|
---------- |
|
NL: convert unicode string `s` to ascii |
|
ref: s.encode('iso-8859-15') |
|
Output: s.decode('ascii', 'ignore') |
|
bleu_metric: 24.022110864391532 |
|
---------- |
|
NL: Django get maximum value associated with field 'added' in model `AuthorizedEmail` |
|
ref: AuthorizedEmail.objects.filter(group=group).order_by('-added')[0] |
|
Output: super(MyModel,▁self).__init__(*args,▁**kwargs) |
|
bleu_metric: 8.552025507097747 |
|
---------- |
|
NL: Find all numbers and dots from a string `text` using regex |
|
ref: re.findall('Test([0-9.]*[0-9]+)', text) |
|
Output: re.findall('\\d+', text) |
|
bleu_metric: 24.73344228394784 |
|
---------- |
|
NL: python regex to find all numbers and dots from 'text' |
|
ref: re.findall('Test([\\d.]*\\d+)', text) |
|
Output: re.findall('\\d+', 'text') |
|
bleu_metric: 30.390044397302297 |
|
---------- |
|
NL: execute script 'script.ps1' using 'powershell.exe' shell |
|
ref: os.system('powershell.exe', 'script.ps1') |
|
Output: subprocess.call(['powershil.exe','script.ps1']) |
|
bleu_metric: 51.84341074271374 |
|
---------- |
|
NL: Sort a list of tuples `b` by third item in the tuple |
|
ref: b.sort(key=lambda x: x[1][2]) |
|
Output: b.sort(key=operator.itemgetter(1)) |
|
bleu_metric: 34.167397320874144 |
|
---------- |
|
NL: get a list of all keys in Cassandra database `cf` with pycassa |
|
ref: list(cf.get_range().get_keys()) |
|
Output: ▁list(set(c) for c in cf.values()) |
|
bleu_metric: 25.543184713657475 |
|
---------- |
|
NL: create a datetime with the current date & time |
|
ref: datetime.datetime.now() |
|
Output: ▁datetime.datetime.now().date() |
|
bleu_metric: 52.66403878479265 |
|
---------- |
|
NL: get the index of an integer `1` from a list `lst` if the list also contains boolean items |
|
ref: next(i for i, x in enumerate(lst) if not isinstance(x, bool) and x == 1) |
|
Output: [i for i, e in enumerate(lst)▁if e == 1] |
|
bleu_metric: 29.140057528358216 |
|
---------- |
|
NL: subtract 13 from every number in a list `a` |
|
ref: a[:] = [(x - 13) for x in a] |
|
Output: [(13 * x) for x in a] |
|
bleu_metric: 43.25713189814218 |
|
---------- |
|
NL: choose a random file from the directory contents of the C drive, `C:\\` |
|
ref: random.choice(os.listdir('C:\\')) |
|
Output: ▁random.choice(os.path.join(directory, 'C:\\')) |
|
bleu_metric: 57.848791070394256 |
|
---------- |
|
NL: get the highest element in absolute value in a numpy matrix `x` |
|
ref: max(x.min(), x.max(), key=abs) |
|
Output: max(x,▁key=operator.itemgetter(1)) |
|
bleu_metric: 17.53528352255253 |
|
---------- |
|
NL: Get all urls within text `s` |
|
ref: re.findall('"(http.*?)"', s, re.MULTILINE | re.DOTALL) |
|
Output: ▁urllib.request.urlopen(s) |
|
bleu_metric: 4.738142856595632 |
|
---------- |
|
NL: match urls whose domain doesn't start with `t` from string `document` using regex |
|
ref: re.findall('http://[^t][^s"]+\\.html', document) |
|
Output: re.findall('(?<!\\d)\\.\\d+\\.\\d+) |
|
bleu_metric: 25.05523539251516 |
|
---------- |
|
NL: split a string `mystring` considering the spaces ' ' |
|
ref: mystring.replace(' ', '! !').split('!') |
|
Output: re.split(' ', mystring) |
|
bleu_metric: 22.198393592766198 |
|
---------- |
|
NL: open file `path` with mode 'r' |
|
ref: open(path, 'r') |
|
Output: os.path.join(path, 'r') |
|
bleu_metric: 59.56403592718089 |
|
---------- |
|
NL: sum elements at the same index in list `data` |
|
ref: [[sum(item) for item in zip(*items)] for items in zip(*data)] |
|
Output: ▁sum(item[0] for item in data) |
|
bleu_metric: 12.82189675234617 |
|
---------- |
|
NL: add a new axis to array `a` |
|
ref: a[:, (np.newaxis)] |
|
Output: a[:, (None)] + a[::-1] |
|
bleu_metric: 31.852775583797786 |
|
---------- |
|
|