File size: 3,870 Bytes
9b4ac13
 
3c942d8
 
9b4ac13
 
 
 
3c942d8
9b4ac13
3c942d8
9b4ac13
 
 
 
 
 
 
 
 
 
 
 
3c942d8
9b4ac13
 
 
 
 
 
3c942d8
9b4ac13
3c942d8
 
 
9b4ac13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c942d8
9b4ac13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c942d8
9b4ac13
 
3c942d8
9b4ac13
 
 
 
 
 
 
 
3c942d8
9b4ac13
3c942d8
9b4ac13
3c942d8
9b4ac13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c942d8
 
 
9b4ac13
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
---
library_name: peft
license: mit
base_model: NousResearch/Nous-Hermes-llama-2-7b
tags:
- axolotl
- generated_from_trainer
datasets:
- Aivesa/dataset_2a4738f3-e023-46f4-ae13-2b8b3faf7cb2
model-index:
- name: 37f4a9fa-b0b6-4fc9-b20b-00147fd7724e
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.6.0`
```yaml
adapter: lora
base_model: NousResearch/Nous-Hermes-llama-2-7b
bf16: auto
chat_template: llama3
dataset_prepared_path: /workspace/axolotl/data/prepared
datasets:
- ds_type: json
  format: custom
  path: Aivesa/dataset_2a4738f3-e023-46f4-ae13-2b8b3faf7cb2
  type:
    field_input: title
    field_instruction: category
    field_output: title_category
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: Aivesa/37f4a9fa-b0b6-4fc9-b20b-00147fd7724e
hub_private_repo: true
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 10
micro_batch_size: 2
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: /workspace/axolotl/outputs
pad_to_sequence_len: true
push_to_hub: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_safetensors: true
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
use_accelerate: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 2a4738f3-e023-46f4-ae13-2b8b3faf7cb2
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 2a4738f3-e023-46f4-ae13-2b8b3faf7cb2
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

```

</details><br>

# 37f4a9fa-b0b6-4fc9-b20b-00147fd7724e

This model is a fine-tuned version of [NousResearch/Nous-Hermes-llama-2-7b](https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b) on the Aivesa/dataset_2a4738f3-e023-46f4-ae13-2b8b3faf7cb2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4859

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 10

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.5313        | 0.0000 | 3    | 1.4529          |
| 1.3854        | 0.0001 | 6    | 1.1243          |
| 0.8057        | 0.0001 | 9    | 0.4859          |


### Framework versions

- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.0a0+e000cf0ad9.nv24.10
- Datasets 3.1.0
- Tokenizers 0.21.0