File size: 3,839 Bytes
9b4ac13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2.5-Math-7B-Instruct
tags:
- axolotl
- generated_from_trainer
datasets:
- Aivesa/dataset_e59ee620-6dc6-41b8-8080-617c8e470bc7
model-index:
- name: 77c11f2a-7fc5-42a9-af8d-7f0bb2c3679b
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.6.0`
```yaml
adapter: lora
base_model: unsloth/Qwen2.5-Math-7B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: /workspace/axolotl/data/prepared
datasets:
- ds_type: json
format: custom
path: Aivesa/dataset_e59ee620-6dc6-41b8-8080-617c8e470bc7
type:
field_instruction: instruction
field_output: output_1
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: Aivesa/77c11f2a-7fc5-42a9-af8d-7f0bb2c3679b
hub_private_repo: true
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 10
micro_batch_size: 2
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: /workspace/axolotl/outputs
pad_to_sequence_len: true
push_to_hub: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_safetensors: true
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
use_accelerate: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: e59ee620-6dc6-41b8-8080-617c8e470bc7
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: e59ee620-6dc6-41b8-8080-617c8e470bc7
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 77c11f2a-7fc5-42a9-af8d-7f0bb2c3679b
This model is a fine-tuned version of [unsloth/Qwen2.5-Math-7B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Math-7B-Instruct) on the Aivesa/dataset_e59ee620-6dc6-41b8-8080-617c8e470bc7 dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6205
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.4752 | 0.0015 | 3 | 2.6821 |
| 2.6637 | 0.0031 | 6 | 2.6741 |
| 2.5646 | 0.0046 | 9 | 2.6205 |
### Framework versions
- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.0a0+e000cf0ad9.nv24.10
- Datasets 3.1.0
- Tokenizers 0.21.0 |