Safetensors
File size: 5,211 Bytes
face319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a3a51bb2-faa9-47ef-8cc2-c33761bc16b6",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Complete model usage guidelines available for reference, applicable to the MineMA-8B series models\n",
    "from transformers import AutoTokenizer, AutoModelForCausalLM\n",
    "import torch\n",
    "\n",
    "model_path = \"\"\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(model_path)\n",
    "model = AutoModelForCausalLM.from_pretrained(\n",
    "    model_path,\n",
    "    torch_dtype=torch.bfloat16,\n",
    "    device_map = \"auto\",\n",
    "    # Or you can specify the device number to use like below\n",
    "    # device_map = {\"\": 0},\n",
    ")\n",
    "\n",
    "sys_mes = \"You are a Large Language Model, and your task is to answer questions posed by users about Minecraft. Utilize your knowledge and understanding of the game to provide detailed, accurate, and helpful responses. Use your capabilities to assist users in solving problems, understanding game mechanics, and enhancing their Minecraft experience.\"\n",
    "user_mes = \"\"\"\n",
    "How to get diamond in Minecraft?\n",
    "\"\"\"\n",
    "\n",
    "messages = [\n",
    "    {\"role\": \"system\", \"content\": sys_mes},\n",
    "    {\"role\": \"user\", \"content\": user_mes},\n",
    "]\n",
    "\n",
    "input_ids = tokenizer.apply_chat_template(\n",
    "    messages,\n",
    "    add_generation_prompt=True,\n",
    "    return_tensors=\"pt\"\n",
    ").to(model.device)\n",
    "\n",
    "terminators = [\n",
    "    tokenizer.eos_token_id,\n",
    "    tokenizer.convert_tokens_to_ids(\"<|eot_id|>\")\n",
    "]\n",
    "# If using LLaMA-2-based model, use the following code\n",
    "\"\"\"\n",
    "terminators = [\n",
    "    tokenizer.eos_token_id,\n",
    "    tokenizer.convert_tokens_to_ids(\"</s>\")\n",
    "]\n",
    "\"\"\"\n",
    "\n",
    "outputs = model.generate(\n",
    "    input_ids,\n",
    "    max_new_tokens=256,\n",
    "    eos_token_id=terminators,\n",
    "    do_sample=True,\n",
    "    temperature=0.6,\n",
    "    top_p=0.9,\n",
    "    #repetition_penalty=1.3,  # If there are duplicate problems with model responses, you can use this line of code \n",
    ")\n",
    "response = outputs[0][input_ids.shape[-1]:]\n",
    "print(tokenizer.decode(response, skip_special_tokens=True))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "634637b4-e04f-4d3a-a77e-712e53617249",
   "metadata": {},
   "outputs": [],
   "source": [
    "# LoRA model usage guidelines available for reference, applicable to the MineMA-70B series models\n",
    "from transformers import AutoModelForCausalLM, AutoTokenizer\n",
    "import torch\n",
    "import json\n",
    "from peft import PeftModel, LoraConfig, TaskType\n",
    "\n",
    "mode_path = '' # base model path\n",
    "lora_path = '' # lora model path\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(mode_path)\n",
    "\n",
    "model = AutoModelForCausalLM.from_pretrained(mode_path, device_map=\"auto\",torch_dtype=torch.bfloat16)\n",
    "\n",
    "with open('config.json', 'r') as f:\n",
    "    lora_config_data = json.load(f)\n",
    "\n",
    "config = LoraConfig(**lora_config_data)\n",
    "\n",
    "model = PeftModel.from_pretrained(model, model_id=lora_path, config=config)\n",
    "\n",
    "prompt = \"How to get diamond in Minecraft?\"\n",
    "messages = [\n",
    "     {\"role\": \"system\", \"content\": \"You are a Large Language Model, and your task is to answer questions posed by users about Minecraft. Utilize your knowledge and understanding of the game to provide detailed, accurate, and helpful responses. Use your capabilities to assist users in solving problems, understanding game mechanics, and enhancing their Minecraft experience.\"},\n",
    "    {\"role\": \"user\", \"content\":prompt}\n",
    "]\n",
    "\n",
    "input_ids = tokenizer.apply_chat_template(\n",
    "    messages,\n",
    "    add_generation_prompt=True,\n",
    "    return_tensors=\"pt\"\n",
    ").to(model.device)\n",
    "\n",
    "terminators = [\n",
    "    tokenizer.eos_token_id,\n",
    "    tokenizer.convert_tokens_to_ids(\"<|eot_id|>\")\n",
    "]\n",
    "\n",
    "outputs = model.generate(\n",
    "    input_ids,\n",
    "    max_new_tokens=256,\n",
    "    eos_token_id=terminators,\n",
    "    do_sample=True,\n",
    "    temperature=0.6,\n",
    "    top_p=0.9,\n",
    "    #repetition_penalty=1.3,  # If there are duplicate problems with model responses, you can use this line of code \n",
    ")\n",
    "response = outputs[0][input_ids.shape[-1]:]\n",
    "print(tokenizer.decode(response, skip_special_tokens=True))"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}