AjaySharma
commited on
Commit
·
5cde30c
1
Parent(s):
de72696
Upload 9 files
Browse files- .gitattributes +2 -0
- README.md +110 -3
- _config.yml +1 -0
- age_deploy.prototxt +175 -0
- age_net.caffemodel +3 -0
- detect.py +127 -0
- gender_deploy.prototxt +175 -0
- gender_net.caffemodel +3 -0
- opencv_face_detector.pbtxt +2362 -0
- opencv_face_detector_uint8.pb +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
age_net.caffemodel filter=lfs diff=lfs merge=lfs -text
|
36 |
+
gender_net.caffemodel filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,110 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Gender-and-Age-Detection <img alt="GitHub" src="https://img.shields.io/github/license/smahesh29/Gender-and-Age-Detection">
|
2 |
+
|
3 |
+
|
4 |
+
<h2>Objective :</h2>
|
5 |
+
<p>To build a gender and age detector that can approximately guess the gender and age of the person (face) in a picture or through webcam.</p>
|
6 |
+
|
7 |
+
<h2>About the Project :</h2>
|
8 |
+
<p>In this Python Project, I had used Deep Learning to accurately identify the gender and age of a person from a single image of a face. I used the models trained by <a href="https://talhassner.github.io/home/projects/Adience/Adience-data.html">Tal Hassner and Gil Levi</a>. The predicted gender may be one of ‘Male’ and ‘Female’, and the predicted age may be one of the following ranges- (0 – 2), (4 – 6), (8 – 12), (15 – 20), (25 – 32), (38 – 43), (48 – 53), (60 – 100) (8 nodes in the final softmax layer). It is very difficult to accurately guess an exact age from a single image because of factors like makeup, lighting, obstructions, and facial expressions. And so, I made this a classification problem instead of making it one of regression.</p>
|
9 |
+
|
10 |
+
<h2>Dataset :</h2>
|
11 |
+
<p>For this python project, I had used the Adience dataset; the dataset is available in the public domain and you can find it <a href="https://www.kaggle.com/ttungl/adience-benchmark-gender-and-age-classification">here</a>. This dataset serves as a benchmark for face photos and is inclusive of various real-world imaging conditions like noise, lighting, pose, and appearance. The images have been collected from Flickr albums and distributed under the Creative Commons (CC) license. It has a total of 26,580 photos of 2,284 subjects in eight age ranges (as mentioned above) and is about 1GB in size. The models I used had been trained on this dataset.</p>
|
12 |
+
|
13 |
+
<h2>Additional Python Libraries Required :</h2>
|
14 |
+
<ul>
|
15 |
+
<li>OpenCV</li>
|
16 |
+
|
17 |
+
pip install opencv-python
|
18 |
+
</ul>
|
19 |
+
<ul>
|
20 |
+
<li>argparse</li>
|
21 |
+
|
22 |
+
pip install argparse
|
23 |
+
</ul>
|
24 |
+
|
25 |
+
<h2>The contents of this Project :</h2>
|
26 |
+
<ul>
|
27 |
+
<li>opencv_face_detector.pbtxt</li>
|
28 |
+
<li>opencv_face_detector_uint8.pb</li>
|
29 |
+
<li>age_deploy.prototxt</li>
|
30 |
+
<li>age_net.caffemodel</li>
|
31 |
+
<li>gender_deploy.prototxt</li>
|
32 |
+
<li>gender_net.caffemodel</li>
|
33 |
+
<li>a few pictures to try the project on</li>
|
34 |
+
<li>detect.py</li>
|
35 |
+
</ul>
|
36 |
+
<p>For face detection, we have a .pb file- this is a protobuf file (protocol buffer); it holds the graph definition and the trained weights of the model. We can use this to run the trained model. And while a .pb file holds the protobuf in binary format, one with the .pbtxt extension holds it in text format. These are TensorFlow files. For age and gender, the .prototxt files describe the network configuration and the .caffemodel file defines the internal states of the parameters of the layers.</p>
|
37 |
+
|
38 |
+
<h2>Usage :</h2>
|
39 |
+
<ul>
|
40 |
+
<li>Download my Repository</li>
|
41 |
+
<li>Open your Command Prompt or Terminal and change directory to the folder where all the files are present.</li>
|
42 |
+
<li><b>Detecting Gender and Age of face in Image</b> Use Command :</li>
|
43 |
+
|
44 |
+
python detect.py --image <image_name>
|
45 |
+
</ul>
|
46 |
+
<p><b>Note: </b>The Image should be present in same folder where all the files are present</p>
|
47 |
+
<ul>
|
48 |
+
<li><b>Detecting Gender and Age of face through webcam</b> Use Command :</li>
|
49 |
+
|
50 |
+
python detect.py
|
51 |
+
</ul>
|
52 |
+
<ul>
|
53 |
+
<li>Press <b>Ctrl + C</b> to stop the program execution.</li>
|
54 |
+
</ul>
|
55 |
+
|
56 |
+
# Working:
|
57 |
+
[![Watch the video](https://img.youtube.com/vi/ReeccRD21EU/0.jpg)](https://youtu.be/ReeccRD21EU)
|
58 |
+
|
59 |
+
<h2>Examples :</h2>
|
60 |
+
<p><b>NOTE:- I downloaded the images from Google,if you have any query or problem i can remove them, i just used it for Educational purpose.</b></p>
|
61 |
+
|
62 |
+
>python detect.py --image girl1.jpg
|
63 |
+
Gender: Female
|
64 |
+
Age: 25-32 years
|
65 |
+
|
66 |
+
<img src="Example/Detecting age and gender girl1.png">
|
67 |
+
|
68 |
+
>python detect.py --image girl2.jpg
|
69 |
+
Gender: Female
|
70 |
+
Age: 8-12 years
|
71 |
+
|
72 |
+
<img src="Example/Detecting age and gender girl2.png">
|
73 |
+
|
74 |
+
>python detect.py --image kid1.jpg
|
75 |
+
Gender: Male
|
76 |
+
Age: 4-6 years
|
77 |
+
|
78 |
+
<img src="Example/Detecting age and gender kid1.png">
|
79 |
+
|
80 |
+
>python detect.py --image kid2.jpg
|
81 |
+
Gender: Female
|
82 |
+
Age: 4-6 years
|
83 |
+
|
84 |
+
<img src="Example/Detecting age and gender kid2.png">
|
85 |
+
|
86 |
+
>python detect.py --image man1.jpg
|
87 |
+
Gender: Male
|
88 |
+
Age: 38-43 years
|
89 |
+
|
90 |
+
<img src="Example/Detecting age and gender man1.png">
|
91 |
+
|
92 |
+
>python detect.py --image man2.jpg
|
93 |
+
Gender: Male
|
94 |
+
Age: 25-32 years
|
95 |
+
|
96 |
+
<img src="Example/Detecting age and gender man2.png">
|
97 |
+
|
98 |
+
>python detect.py --image woman1.jpg
|
99 |
+
Gender: Female
|
100 |
+
Age: 38-43 years
|
101 |
+
|
102 |
+
<img src="Example/Detecting age and gender woman1.png">
|
103 |
+
|
104 |
+
# Support :
|
105 |
+
If you found this project helpful or you learned something from the source code and want to thank me, consider me to pay my internet bills. This would encourage me to create many such projects 👨🏻💻
|
106 |
+
<ul>
|
107 |
+
<li><a href="https://www.paypal.me/smahesh29"><b>PayPal</b></a></li>
|
108 |
+
<li><a href="https://imjo.in/XNZDCJ"><b>₹ (INR)</b></a></li>
|
109 |
+
<li><b>UPI ID :</b> maheshusa29@oksbi</li>
|
110 |
+
</ul>
|
_config.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
theme: jekyll-theme-tactile
|
age_deploy.prototxt
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: "CaffeNet"
|
2 |
+
input: "data"
|
3 |
+
input_dim: 1
|
4 |
+
input_dim: 3
|
5 |
+
input_dim: 227
|
6 |
+
input_dim: 227
|
7 |
+
layers {
|
8 |
+
name: "conv1"
|
9 |
+
type: CONVOLUTION
|
10 |
+
bottom: "data"
|
11 |
+
top: "conv1"
|
12 |
+
convolution_param {
|
13 |
+
num_output: 96
|
14 |
+
kernel_size: 7
|
15 |
+
stride: 4
|
16 |
+
}
|
17 |
+
}
|
18 |
+
layers {
|
19 |
+
name: "relu1"
|
20 |
+
type: RELU
|
21 |
+
bottom: "conv1"
|
22 |
+
top: "conv1"
|
23 |
+
}
|
24 |
+
layers {
|
25 |
+
name: "pool1"
|
26 |
+
type: POOLING
|
27 |
+
bottom: "conv1"
|
28 |
+
top: "pool1"
|
29 |
+
pooling_param {
|
30 |
+
pool: MAX
|
31 |
+
kernel_size: 3
|
32 |
+
stride: 2
|
33 |
+
}
|
34 |
+
}
|
35 |
+
layers {
|
36 |
+
name: "norm1"
|
37 |
+
type: LRN
|
38 |
+
bottom: "pool1"
|
39 |
+
top: "norm1"
|
40 |
+
lrn_param {
|
41 |
+
local_size: 5
|
42 |
+
alpha: 0.0001
|
43 |
+
beta: 0.75
|
44 |
+
}
|
45 |
+
}
|
46 |
+
layers {
|
47 |
+
name: "conv2"
|
48 |
+
type: CONVOLUTION
|
49 |
+
bottom: "norm1"
|
50 |
+
top: "conv2"
|
51 |
+
convolution_param {
|
52 |
+
num_output: 256
|
53 |
+
pad: 2
|
54 |
+
kernel_size: 5
|
55 |
+
}
|
56 |
+
}
|
57 |
+
layers {
|
58 |
+
name: "relu2"
|
59 |
+
type: RELU
|
60 |
+
bottom: "conv2"
|
61 |
+
top: "conv2"
|
62 |
+
}
|
63 |
+
layers {
|
64 |
+
name: "pool2"
|
65 |
+
type: POOLING
|
66 |
+
bottom: "conv2"
|
67 |
+
top: "pool2"
|
68 |
+
pooling_param {
|
69 |
+
pool: MAX
|
70 |
+
kernel_size: 3
|
71 |
+
stride: 2
|
72 |
+
}
|
73 |
+
}
|
74 |
+
layers {
|
75 |
+
name: "norm2"
|
76 |
+
type: LRN
|
77 |
+
bottom: "pool2"
|
78 |
+
top: "norm2"
|
79 |
+
lrn_param {
|
80 |
+
local_size: 5
|
81 |
+
alpha: 0.0001
|
82 |
+
beta: 0.75
|
83 |
+
}
|
84 |
+
}
|
85 |
+
layers {
|
86 |
+
name: "conv3"
|
87 |
+
type: CONVOLUTION
|
88 |
+
bottom: "norm2"
|
89 |
+
top: "conv3"
|
90 |
+
convolution_param {
|
91 |
+
num_output: 384
|
92 |
+
pad: 1
|
93 |
+
kernel_size: 3
|
94 |
+
}
|
95 |
+
}
|
96 |
+
layers{
|
97 |
+
name: "relu3"
|
98 |
+
type: RELU
|
99 |
+
bottom: "conv3"
|
100 |
+
top: "conv3"
|
101 |
+
}
|
102 |
+
layers {
|
103 |
+
name: "pool5"
|
104 |
+
type: POOLING
|
105 |
+
bottom: "conv3"
|
106 |
+
top: "pool5"
|
107 |
+
pooling_param {
|
108 |
+
pool: MAX
|
109 |
+
kernel_size: 3
|
110 |
+
stride: 2
|
111 |
+
}
|
112 |
+
}
|
113 |
+
layers {
|
114 |
+
name: "fc6"
|
115 |
+
type: INNER_PRODUCT
|
116 |
+
bottom: "pool5"
|
117 |
+
top: "fc6"
|
118 |
+
inner_product_param {
|
119 |
+
num_output: 512
|
120 |
+
}
|
121 |
+
}
|
122 |
+
layers {
|
123 |
+
name: "relu6"
|
124 |
+
type: RELU
|
125 |
+
bottom: "fc6"
|
126 |
+
top: "fc6"
|
127 |
+
}
|
128 |
+
layers {
|
129 |
+
name: "drop6"
|
130 |
+
type: DROPOUT
|
131 |
+
bottom: "fc6"
|
132 |
+
top: "fc6"
|
133 |
+
dropout_param {
|
134 |
+
dropout_ratio: 0.5
|
135 |
+
}
|
136 |
+
}
|
137 |
+
layers {
|
138 |
+
name: "fc7"
|
139 |
+
type: INNER_PRODUCT
|
140 |
+
bottom: "fc6"
|
141 |
+
top: "fc7"
|
142 |
+
inner_product_param {
|
143 |
+
num_output: 512
|
144 |
+
}
|
145 |
+
}
|
146 |
+
layers {
|
147 |
+
name: "relu7"
|
148 |
+
type: RELU
|
149 |
+
bottom: "fc7"
|
150 |
+
top: "fc7"
|
151 |
+
}
|
152 |
+
layers {
|
153 |
+
name: "drop7"
|
154 |
+
type: DROPOUT
|
155 |
+
bottom: "fc7"
|
156 |
+
top: "fc7"
|
157 |
+
dropout_param {
|
158 |
+
dropout_ratio: 0.5
|
159 |
+
}
|
160 |
+
}
|
161 |
+
layers {
|
162 |
+
name: "fc8"
|
163 |
+
type: INNER_PRODUCT
|
164 |
+
bottom: "fc7"
|
165 |
+
top: "fc8"
|
166 |
+
inner_product_param {
|
167 |
+
num_output: 8
|
168 |
+
}
|
169 |
+
}
|
170 |
+
layers {
|
171 |
+
name: "prob"
|
172 |
+
type: SOFTMAX
|
173 |
+
bottom: "fc8"
|
174 |
+
top: "prob"
|
175 |
+
}
|
age_net.caffemodel
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6dde5d07df5ca1d66ff39e525693f05ccfb9d2c437e188fdd1a10d42e57fabd6
|
3 |
+
size 45661480
|
detect.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# A Gender and Age Detection program by Mahesh Sawant
|
2 |
+
import os
|
3 |
+
import pandas as pd
|
4 |
+
import cv2
|
5 |
+
import math
|
6 |
+
import argparse
|
7 |
+
|
8 |
+
dic = {"images": [], "gender": [], "age": []}
|
9 |
+
|
10 |
+
|
11 |
+
def highlightFace(net, frame, conf_threshold=0.7):
|
12 |
+
frameOpencvDnn = frame.copy()
|
13 |
+
frameHeight = frameOpencvDnn.shape[0]
|
14 |
+
frameWidth = frameOpencvDnn.shape[1]
|
15 |
+
blob = cv2.dnn.blobFromImage(frameOpencvDnn, 1.0, (300, 300), [104, 117, 123], True, False)
|
16 |
+
|
17 |
+
net.setInput(blob)
|
18 |
+
detections = net.forward()
|
19 |
+
faceBoxes = []
|
20 |
+
for i in range(detections.shape[2]):
|
21 |
+
confidence = detections[0, 0, i, 2]
|
22 |
+
if confidence > conf_threshold:
|
23 |
+
x1 = int(detections[0, 0, i, 3] * frameWidth)
|
24 |
+
y1 = int(detections[0, 0, i, 4] * frameHeight)
|
25 |
+
x2 = int(detections[0, 0, i, 5] * frameWidth)
|
26 |
+
y2 = int(detections[0, 0, i, 6] * frameHeight)
|
27 |
+
faceBoxes.append([x1, y1, x2, y2])
|
28 |
+
cv2.rectangle(frameOpencvDnn, (x1, y1), (x2, y2), (0, 255, 0), int(round(frameHeight / 150)), 8)
|
29 |
+
return frameOpencvDnn, faceBoxes
|
30 |
+
|
31 |
+
|
32 |
+
def process_image(image):
|
33 |
+
# parser=argparse.ArgumentParser()
|
34 |
+
# parser.add_argument('--image')
|
35 |
+
#
|
36 |
+
# args=parser.parse_args()
|
37 |
+
|
38 |
+
faceProto = "opencv_face_detector.pbtxt"
|
39 |
+
faceModel = "opencv_face_detector_uint8.pb"
|
40 |
+
ageProto = "age_deploy.prototxt"
|
41 |
+
ageModel = "age_net.caffemodel"
|
42 |
+
genderProto = "gender_deploy.prototxt"
|
43 |
+
genderModel = "gender_net.caffemodel"
|
44 |
+
|
45 |
+
MODEL_MEAN_VALUES = (78.4263377603, 87.7689143744, 114.895847746)
|
46 |
+
ageList = ['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)']
|
47 |
+
genderList = ['Male', 'Female']
|
48 |
+
|
49 |
+
faceNet = cv2.dnn.readNet(faceModel, faceProto)
|
50 |
+
ageNet = cv2.dnn.readNet(ageModel, ageProto)
|
51 |
+
genderNet = cv2.dnn.readNet(genderModel, genderProto)
|
52 |
+
|
53 |
+
video = cv2.VideoCapture(image)
|
54 |
+
padding = 20
|
55 |
+
while cv2.waitKey(1) < 0:
|
56 |
+
try:
|
57 |
+
hasFrame, frame = video.read()
|
58 |
+
if not hasFrame:
|
59 |
+
cv2.waitKey()
|
60 |
+
break
|
61 |
+
|
62 |
+
resultImg, faceBoxes = highlightFace(faceNet, frame)
|
63 |
+
if not faceBoxes:
|
64 |
+
print("No face detected")
|
65 |
+
|
66 |
+
for faceBox in faceBoxes:
|
67 |
+
face = frame[max(0, faceBox[1] - padding):
|
68 |
+
min(faceBox[3] + padding, frame.shape[0] - 1), max(0, faceBox[0] - padding)
|
69 |
+
:min(faceBox[2] + padding,
|
70 |
+
frame.shape[1] - 1)]
|
71 |
+
|
72 |
+
blob = cv2.dnn.blobFromImage(face, 1.0, (227, 227), MODEL_MEAN_VALUES, swapRB=False)
|
73 |
+
genderNet.setInput(blob)
|
74 |
+
genderPreds = genderNet.forward()
|
75 |
+
gender = genderList[genderPreds[0].argmax()]
|
76 |
+
print(f'Gender: {gender}')
|
77 |
+
|
78 |
+
ageNet.setInput(blob)
|
79 |
+
agePreds = ageNet.forward()
|
80 |
+
age = ageList[agePreds[0].argmax()]
|
81 |
+
|
82 |
+
print(f'Age: {age[1:-1]} years')
|
83 |
+
dic['images'].append(image)
|
84 |
+
dic['gender'].append(gender)
|
85 |
+
dic['age'].append(age[1:-1])
|
86 |
+
|
87 |
+
# cv2.putText(resultImg, f'{gender}, {age}', (faceBox[0], faceBox[1]-10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0,255,255), 2, cv2.LINE_AA)
|
88 |
+
# cv2.imshow("Detecting age and gender", resultImg)
|
89 |
+
except Exception as e:
|
90 |
+
continue
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
import boto3
|
95 |
+
s3 = boto3.resource(
|
96 |
+
service_name = 's3',
|
97 |
+
region_name = 'ap-south-1',
|
98 |
+
aws_access_key_id = 'AKIAYNE4X3VIWUPXM75R',
|
99 |
+
aws_secret_access_key ='6aULHnk84+vEr5M/cHu05f1IxS3l6IjrjHwRWjN8'
|
100 |
+
)
|
101 |
+
def download_s3_folder(bucket, folder, local_dir='./images'):
|
102 |
+
bucket = s3.Bucket(bucket)
|
103 |
+
for obj in bucket.objects.filter(Prefix=folder):
|
104 |
+
target = obj.key if local_dir is None \
|
105 |
+
else os.path.join(local_dir, os.path.relpath(obj.key, folder))
|
106 |
+
if not os.path.exists(os.path.dirname(target)):
|
107 |
+
os.makedirs(os.path.dirname(target))
|
108 |
+
if obj.key[-1] == '/':
|
109 |
+
continue
|
110 |
+
bucket.download_file(obj.key, target)
|
111 |
+
|
112 |
+
|
113 |
+
def predict_age_gender():
|
114 |
+
image = os.listdir('images')
|
115 |
+
|
116 |
+
for img in image:
|
117 |
+
img = './images/' + img
|
118 |
+
process_image(img)
|
119 |
+
print(dic)
|
120 |
+
df = pd.DataFrame.from_dict(dic, orient='index').transpose()
|
121 |
+
df.head()
|
122 |
+
df.to_excel("./output/result_s3.xls")
|
123 |
+
|
124 |
+
download_s3_folder('genderagedata','input_images')
|
125 |
+
predict_age_gender()
|
126 |
+
|
127 |
+
s3.Bucket('genderagedata').upload_file(Filename='./output/result_s3.xls', Key='output_images/result.xls')
|
gender_deploy.prototxt
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: "CaffeNet"
|
2 |
+
input: "data"
|
3 |
+
input_dim: 10
|
4 |
+
input_dim: 3
|
5 |
+
input_dim: 227
|
6 |
+
input_dim: 227
|
7 |
+
layers {
|
8 |
+
name: "conv1"
|
9 |
+
type: CONVOLUTION
|
10 |
+
bottom: "data"
|
11 |
+
top: "conv1"
|
12 |
+
convolution_param {
|
13 |
+
num_output: 96
|
14 |
+
kernel_size: 7
|
15 |
+
stride: 4
|
16 |
+
}
|
17 |
+
}
|
18 |
+
layers {
|
19 |
+
name: "relu1"
|
20 |
+
type: RELU
|
21 |
+
bottom: "conv1"
|
22 |
+
top: "conv1"
|
23 |
+
}
|
24 |
+
layers {
|
25 |
+
name: "pool1"
|
26 |
+
type: POOLING
|
27 |
+
bottom: "conv1"
|
28 |
+
top: "pool1"
|
29 |
+
pooling_param {
|
30 |
+
pool: MAX
|
31 |
+
kernel_size: 3
|
32 |
+
stride: 2
|
33 |
+
}
|
34 |
+
}
|
35 |
+
layers {
|
36 |
+
name: "norm1"
|
37 |
+
type: LRN
|
38 |
+
bottom: "pool1"
|
39 |
+
top: "norm1"
|
40 |
+
lrn_param {
|
41 |
+
local_size: 5
|
42 |
+
alpha: 0.0001
|
43 |
+
beta: 0.75
|
44 |
+
}
|
45 |
+
}
|
46 |
+
layers {
|
47 |
+
name: "conv2"
|
48 |
+
type: CONVOLUTION
|
49 |
+
bottom: "norm1"
|
50 |
+
top: "conv2"
|
51 |
+
convolution_param {
|
52 |
+
num_output: 256
|
53 |
+
pad: 2
|
54 |
+
kernel_size: 5
|
55 |
+
}
|
56 |
+
}
|
57 |
+
layers {
|
58 |
+
name: "relu2"
|
59 |
+
type: RELU
|
60 |
+
bottom: "conv2"
|
61 |
+
top: "conv2"
|
62 |
+
}
|
63 |
+
layers {
|
64 |
+
name: "pool2"
|
65 |
+
type: POOLING
|
66 |
+
bottom: "conv2"
|
67 |
+
top: "pool2"
|
68 |
+
pooling_param {
|
69 |
+
pool: MAX
|
70 |
+
kernel_size: 3
|
71 |
+
stride: 2
|
72 |
+
}
|
73 |
+
}
|
74 |
+
layers {
|
75 |
+
name: "norm2"
|
76 |
+
type: LRN
|
77 |
+
bottom: "pool2"
|
78 |
+
top: "norm2"
|
79 |
+
lrn_param {
|
80 |
+
local_size: 5
|
81 |
+
alpha: 0.0001
|
82 |
+
beta: 0.75
|
83 |
+
}
|
84 |
+
}
|
85 |
+
layers {
|
86 |
+
name: "conv3"
|
87 |
+
type: CONVOLUTION
|
88 |
+
bottom: "norm2"
|
89 |
+
top: "conv3"
|
90 |
+
convolution_param {
|
91 |
+
num_output: 384
|
92 |
+
pad: 1
|
93 |
+
kernel_size: 3
|
94 |
+
}
|
95 |
+
}
|
96 |
+
layers{
|
97 |
+
name: "relu3"
|
98 |
+
type: RELU
|
99 |
+
bottom: "conv3"
|
100 |
+
top: "conv3"
|
101 |
+
}
|
102 |
+
layers {
|
103 |
+
name: "pool5"
|
104 |
+
type: POOLING
|
105 |
+
bottom: "conv3"
|
106 |
+
top: "pool5"
|
107 |
+
pooling_param {
|
108 |
+
pool: MAX
|
109 |
+
kernel_size: 3
|
110 |
+
stride: 2
|
111 |
+
}
|
112 |
+
}
|
113 |
+
layers {
|
114 |
+
name: "fc6"
|
115 |
+
type: INNER_PRODUCT
|
116 |
+
bottom: "pool5"
|
117 |
+
top: "fc6"
|
118 |
+
inner_product_param {
|
119 |
+
num_output: 512
|
120 |
+
}
|
121 |
+
}
|
122 |
+
layers {
|
123 |
+
name: "relu6"
|
124 |
+
type: RELU
|
125 |
+
bottom: "fc6"
|
126 |
+
top: "fc6"
|
127 |
+
}
|
128 |
+
layers {
|
129 |
+
name: "drop6"
|
130 |
+
type: DROPOUT
|
131 |
+
bottom: "fc6"
|
132 |
+
top: "fc6"
|
133 |
+
dropout_param {
|
134 |
+
dropout_ratio: 0.5
|
135 |
+
}
|
136 |
+
}
|
137 |
+
layers {
|
138 |
+
name: "fc7"
|
139 |
+
type: INNER_PRODUCT
|
140 |
+
bottom: "fc6"
|
141 |
+
top: "fc7"
|
142 |
+
inner_product_param {
|
143 |
+
num_output: 512
|
144 |
+
}
|
145 |
+
}
|
146 |
+
layers {
|
147 |
+
name: "relu7"
|
148 |
+
type: RELU
|
149 |
+
bottom: "fc7"
|
150 |
+
top: "fc7"
|
151 |
+
}
|
152 |
+
layers {
|
153 |
+
name: "drop7"
|
154 |
+
type: DROPOUT
|
155 |
+
bottom: "fc7"
|
156 |
+
top: "fc7"
|
157 |
+
dropout_param {
|
158 |
+
dropout_ratio: 0.5
|
159 |
+
}
|
160 |
+
}
|
161 |
+
layers {
|
162 |
+
name: "fc8"
|
163 |
+
type: INNER_PRODUCT
|
164 |
+
bottom: "fc7"
|
165 |
+
top: "fc8"
|
166 |
+
inner_product_param {
|
167 |
+
num_output: 2
|
168 |
+
}
|
169 |
+
}
|
170 |
+
layers {
|
171 |
+
name: "prob"
|
172 |
+
type: SOFTMAX
|
173 |
+
bottom: "fc8"
|
174 |
+
top: "prob"
|
175 |
+
}
|
gender_net.caffemodel
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac7571b281ae078817764b645a20541bd6aa1babeac20a45e6d8de7d61ba0e50
|
3 |
+
size 45649168
|
opencv_face_detector.pbtxt
ADDED
@@ -0,0 +1,2362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
node {
|
2 |
+
name: "data"
|
3 |
+
op: "Placeholder"
|
4 |
+
attr {
|
5 |
+
key: "dtype"
|
6 |
+
value {
|
7 |
+
type: DT_FLOAT
|
8 |
+
}
|
9 |
+
}
|
10 |
+
}
|
11 |
+
node {
|
12 |
+
name: "data_bn/FusedBatchNorm"
|
13 |
+
op: "FusedBatchNorm"
|
14 |
+
input: "data:0"
|
15 |
+
input: "data_bn/gamma"
|
16 |
+
input: "data_bn/beta"
|
17 |
+
input: "data_bn/mean"
|
18 |
+
input: "data_bn/std"
|
19 |
+
attr {
|
20 |
+
key: "epsilon"
|
21 |
+
value {
|
22 |
+
f: 1.00099996416e-05
|
23 |
+
}
|
24 |
+
}
|
25 |
+
}
|
26 |
+
node {
|
27 |
+
name: "data_scale/Mul"
|
28 |
+
op: "Mul"
|
29 |
+
input: "data_bn/FusedBatchNorm"
|
30 |
+
input: "data_scale/mul"
|
31 |
+
}
|
32 |
+
node {
|
33 |
+
name: "data_scale/BiasAdd"
|
34 |
+
op: "BiasAdd"
|
35 |
+
input: "data_scale/Mul"
|
36 |
+
input: "data_scale/add"
|
37 |
+
}
|
38 |
+
node {
|
39 |
+
name: "SpaceToBatchND/block_shape"
|
40 |
+
op: "Const"
|
41 |
+
attr {
|
42 |
+
key: "value"
|
43 |
+
value {
|
44 |
+
tensor {
|
45 |
+
dtype: DT_INT32
|
46 |
+
tensor_shape {
|
47 |
+
dim {
|
48 |
+
size: 2
|
49 |
+
}
|
50 |
+
}
|
51 |
+
int_val: 1
|
52 |
+
int_val: 1
|
53 |
+
}
|
54 |
+
}
|
55 |
+
}
|
56 |
+
}
|
57 |
+
node {
|
58 |
+
name: "SpaceToBatchND/paddings"
|
59 |
+
op: "Const"
|
60 |
+
attr {
|
61 |
+
key: "value"
|
62 |
+
value {
|
63 |
+
tensor {
|
64 |
+
dtype: DT_INT32
|
65 |
+
tensor_shape {
|
66 |
+
dim {
|
67 |
+
size: 2
|
68 |
+
}
|
69 |
+
dim {
|
70 |
+
size: 2
|
71 |
+
}
|
72 |
+
}
|
73 |
+
int_val: 3
|
74 |
+
int_val: 3
|
75 |
+
int_val: 3
|
76 |
+
int_val: 3
|
77 |
+
}
|
78 |
+
}
|
79 |
+
}
|
80 |
+
}
|
81 |
+
node {
|
82 |
+
name: "Pad"
|
83 |
+
op: "SpaceToBatchND"
|
84 |
+
input: "data_scale/BiasAdd"
|
85 |
+
input: "SpaceToBatchND/block_shape"
|
86 |
+
input: "SpaceToBatchND/paddings"
|
87 |
+
}
|
88 |
+
node {
|
89 |
+
name: "conv1_h/Conv2D"
|
90 |
+
op: "Conv2D"
|
91 |
+
input: "Pad"
|
92 |
+
input: "conv1_h/weights"
|
93 |
+
attr {
|
94 |
+
key: "dilations"
|
95 |
+
value {
|
96 |
+
list {
|
97 |
+
i: 1
|
98 |
+
i: 1
|
99 |
+
i: 1
|
100 |
+
i: 1
|
101 |
+
}
|
102 |
+
}
|
103 |
+
}
|
104 |
+
attr {
|
105 |
+
key: "padding"
|
106 |
+
value {
|
107 |
+
s: "VALID"
|
108 |
+
}
|
109 |
+
}
|
110 |
+
attr {
|
111 |
+
key: "strides"
|
112 |
+
value {
|
113 |
+
list {
|
114 |
+
i: 1
|
115 |
+
i: 2
|
116 |
+
i: 2
|
117 |
+
i: 1
|
118 |
+
}
|
119 |
+
}
|
120 |
+
}
|
121 |
+
}
|
122 |
+
node {
|
123 |
+
name: "conv1_h/BiasAdd"
|
124 |
+
op: "BiasAdd"
|
125 |
+
input: "conv1_h/Conv2D"
|
126 |
+
input: "conv1_h/bias"
|
127 |
+
}
|
128 |
+
node {
|
129 |
+
name: "BatchToSpaceND"
|
130 |
+
op: "BatchToSpaceND"
|
131 |
+
input: "conv1_h/BiasAdd"
|
132 |
+
}
|
133 |
+
node {
|
134 |
+
name: "conv1_bn_h/FusedBatchNorm"
|
135 |
+
op: "FusedBatchNorm"
|
136 |
+
input: "BatchToSpaceND"
|
137 |
+
input: "conv1_bn_h/gamma"
|
138 |
+
input: "conv1_bn_h/beta"
|
139 |
+
input: "conv1_bn_h/mean"
|
140 |
+
input: "conv1_bn_h/std"
|
141 |
+
attr {
|
142 |
+
key: "epsilon"
|
143 |
+
value {
|
144 |
+
f: 1.00099996416e-05
|
145 |
+
}
|
146 |
+
}
|
147 |
+
}
|
148 |
+
node {
|
149 |
+
name: "conv1_scale_h/Mul"
|
150 |
+
op: "Mul"
|
151 |
+
input: "conv1_bn_h/FusedBatchNorm"
|
152 |
+
input: "conv1_scale_h/mul"
|
153 |
+
}
|
154 |
+
node {
|
155 |
+
name: "conv1_scale_h/BiasAdd"
|
156 |
+
op: "BiasAdd"
|
157 |
+
input: "conv1_scale_h/Mul"
|
158 |
+
input: "conv1_scale_h/add"
|
159 |
+
}
|
160 |
+
node {
|
161 |
+
name: "Relu"
|
162 |
+
op: "Relu"
|
163 |
+
input: "conv1_scale_h/BiasAdd"
|
164 |
+
}
|
165 |
+
node {
|
166 |
+
name: "conv1_pool/MaxPool"
|
167 |
+
op: "MaxPool"
|
168 |
+
input: "Relu"
|
169 |
+
attr {
|
170 |
+
key: "ksize"
|
171 |
+
value {
|
172 |
+
list {
|
173 |
+
i: 1
|
174 |
+
i: 3
|
175 |
+
i: 3
|
176 |
+
i: 1
|
177 |
+
}
|
178 |
+
}
|
179 |
+
}
|
180 |
+
attr {
|
181 |
+
key: "padding"
|
182 |
+
value {
|
183 |
+
s: "SAME"
|
184 |
+
}
|
185 |
+
}
|
186 |
+
attr {
|
187 |
+
key: "strides"
|
188 |
+
value {
|
189 |
+
list {
|
190 |
+
i: 1
|
191 |
+
i: 2
|
192 |
+
i: 2
|
193 |
+
i: 1
|
194 |
+
}
|
195 |
+
}
|
196 |
+
}
|
197 |
+
}
|
198 |
+
node {
|
199 |
+
name: "layer_64_1_conv1_h/Conv2D"
|
200 |
+
op: "Conv2D"
|
201 |
+
input: "conv1_pool/MaxPool"
|
202 |
+
input: "layer_64_1_conv1_h/weights"
|
203 |
+
attr {
|
204 |
+
key: "dilations"
|
205 |
+
value {
|
206 |
+
list {
|
207 |
+
i: 1
|
208 |
+
i: 1
|
209 |
+
i: 1
|
210 |
+
i: 1
|
211 |
+
}
|
212 |
+
}
|
213 |
+
}
|
214 |
+
attr {
|
215 |
+
key: "padding"
|
216 |
+
value {
|
217 |
+
s: "SAME"
|
218 |
+
}
|
219 |
+
}
|
220 |
+
attr {
|
221 |
+
key: "strides"
|
222 |
+
value {
|
223 |
+
list {
|
224 |
+
i: 1
|
225 |
+
i: 1
|
226 |
+
i: 1
|
227 |
+
i: 1
|
228 |
+
}
|
229 |
+
}
|
230 |
+
}
|
231 |
+
}
|
232 |
+
node {
|
233 |
+
name: "layer_64_1_bn2_h/FusedBatchNorm"
|
234 |
+
op: "BiasAdd"
|
235 |
+
input: "layer_64_1_conv1_h/Conv2D"
|
236 |
+
input: "layer_64_1_conv1_h/Conv2D_bn_offset"
|
237 |
+
}
|
238 |
+
node {
|
239 |
+
name: "layer_64_1_scale2_h/Mul"
|
240 |
+
op: "Mul"
|
241 |
+
input: "layer_64_1_bn2_h/FusedBatchNorm"
|
242 |
+
input: "layer_64_1_scale2_h/mul"
|
243 |
+
}
|
244 |
+
node {
|
245 |
+
name: "layer_64_1_scale2_h/BiasAdd"
|
246 |
+
op: "BiasAdd"
|
247 |
+
input: "layer_64_1_scale2_h/Mul"
|
248 |
+
input: "layer_64_1_scale2_h/add"
|
249 |
+
}
|
250 |
+
node {
|
251 |
+
name: "Relu_1"
|
252 |
+
op: "Relu"
|
253 |
+
input: "layer_64_1_scale2_h/BiasAdd"
|
254 |
+
}
|
255 |
+
node {
|
256 |
+
name: "layer_64_1_conv2_h/Conv2D"
|
257 |
+
op: "Conv2D"
|
258 |
+
input: "Relu_1"
|
259 |
+
input: "layer_64_1_conv2_h/weights"
|
260 |
+
attr {
|
261 |
+
key: "dilations"
|
262 |
+
value {
|
263 |
+
list {
|
264 |
+
i: 1
|
265 |
+
i: 1
|
266 |
+
i: 1
|
267 |
+
i: 1
|
268 |
+
}
|
269 |
+
}
|
270 |
+
}
|
271 |
+
attr {
|
272 |
+
key: "padding"
|
273 |
+
value {
|
274 |
+
s: "SAME"
|
275 |
+
}
|
276 |
+
}
|
277 |
+
attr {
|
278 |
+
key: "strides"
|
279 |
+
value {
|
280 |
+
list {
|
281 |
+
i: 1
|
282 |
+
i: 1
|
283 |
+
i: 1
|
284 |
+
i: 1
|
285 |
+
}
|
286 |
+
}
|
287 |
+
}
|
288 |
+
}
|
289 |
+
node {
|
290 |
+
name: "add"
|
291 |
+
op: "Add"
|
292 |
+
input: "layer_64_1_conv2_h/Conv2D"
|
293 |
+
input: "conv1_pool/MaxPool"
|
294 |
+
}
|
295 |
+
node {
|
296 |
+
name: "layer_128_1_bn1_h/FusedBatchNorm"
|
297 |
+
op: "FusedBatchNorm"
|
298 |
+
input: "add"
|
299 |
+
input: "layer_128_1_bn1_h/gamma"
|
300 |
+
input: "layer_128_1_bn1_h/beta"
|
301 |
+
input: "layer_128_1_bn1_h/mean"
|
302 |
+
input: "layer_128_1_bn1_h/std"
|
303 |
+
attr {
|
304 |
+
key: "epsilon"
|
305 |
+
value {
|
306 |
+
f: 1.00099996416e-05
|
307 |
+
}
|
308 |
+
}
|
309 |
+
}
|
310 |
+
node {
|
311 |
+
name: "layer_128_1_scale1_h/Mul"
|
312 |
+
op: "Mul"
|
313 |
+
input: "layer_128_1_bn1_h/FusedBatchNorm"
|
314 |
+
input: "layer_128_1_scale1_h/mul"
|
315 |
+
}
|
316 |
+
node {
|
317 |
+
name: "layer_128_1_scale1_h/BiasAdd"
|
318 |
+
op: "BiasAdd"
|
319 |
+
input: "layer_128_1_scale1_h/Mul"
|
320 |
+
input: "layer_128_1_scale1_h/add"
|
321 |
+
}
|
322 |
+
node {
|
323 |
+
name: "Relu_2"
|
324 |
+
op: "Relu"
|
325 |
+
input: "layer_128_1_scale1_h/BiasAdd"
|
326 |
+
}
|
327 |
+
node {
|
328 |
+
name: "layer_128_1_conv_expand_h/Conv2D"
|
329 |
+
op: "Conv2D"
|
330 |
+
input: "Relu_2"
|
331 |
+
input: "layer_128_1_conv_expand_h/weights"
|
332 |
+
attr {
|
333 |
+
key: "dilations"
|
334 |
+
value {
|
335 |
+
list {
|
336 |
+
i: 1
|
337 |
+
i: 1
|
338 |
+
i: 1
|
339 |
+
i: 1
|
340 |
+
}
|
341 |
+
}
|
342 |
+
}
|
343 |
+
attr {
|
344 |
+
key: "padding"
|
345 |
+
value {
|
346 |
+
s: "SAME"
|
347 |
+
}
|
348 |
+
}
|
349 |
+
attr {
|
350 |
+
key: "strides"
|
351 |
+
value {
|
352 |
+
list {
|
353 |
+
i: 1
|
354 |
+
i: 2
|
355 |
+
i: 2
|
356 |
+
i: 1
|
357 |
+
}
|
358 |
+
}
|
359 |
+
}
|
360 |
+
}
|
361 |
+
node {
|
362 |
+
name: "layer_128_1_conv1_h/Conv2D"
|
363 |
+
op: "Conv2D"
|
364 |
+
input: "Relu_2"
|
365 |
+
input: "layer_128_1_conv1_h/weights"
|
366 |
+
attr {
|
367 |
+
key: "dilations"
|
368 |
+
value {
|
369 |
+
list {
|
370 |
+
i: 1
|
371 |
+
i: 1
|
372 |
+
i: 1
|
373 |
+
i: 1
|
374 |
+
}
|
375 |
+
}
|
376 |
+
}
|
377 |
+
attr {
|
378 |
+
key: "padding"
|
379 |
+
value {
|
380 |
+
s: "SAME"
|
381 |
+
}
|
382 |
+
}
|
383 |
+
attr {
|
384 |
+
key: "strides"
|
385 |
+
value {
|
386 |
+
list {
|
387 |
+
i: 1
|
388 |
+
i: 2
|
389 |
+
i: 2
|
390 |
+
i: 1
|
391 |
+
}
|
392 |
+
}
|
393 |
+
}
|
394 |
+
}
|
395 |
+
node {
|
396 |
+
name: "layer_128_1_bn2/FusedBatchNorm"
|
397 |
+
op: "BiasAdd"
|
398 |
+
input: "layer_128_1_conv1_h/Conv2D"
|
399 |
+
input: "layer_128_1_conv1_h/Conv2D_bn_offset"
|
400 |
+
}
|
401 |
+
node {
|
402 |
+
name: "layer_128_1_scale2/Mul"
|
403 |
+
op: "Mul"
|
404 |
+
input: "layer_128_1_bn2/FusedBatchNorm"
|
405 |
+
input: "layer_128_1_scale2/mul"
|
406 |
+
}
|
407 |
+
node {
|
408 |
+
name: "layer_128_1_scale2/BiasAdd"
|
409 |
+
op: "BiasAdd"
|
410 |
+
input: "layer_128_1_scale2/Mul"
|
411 |
+
input: "layer_128_1_scale2/add"
|
412 |
+
}
|
413 |
+
node {
|
414 |
+
name: "Relu_3"
|
415 |
+
op: "Relu"
|
416 |
+
input: "layer_128_1_scale2/BiasAdd"
|
417 |
+
}
|
418 |
+
node {
|
419 |
+
name: "layer_128_1_conv2/Conv2D"
|
420 |
+
op: "Conv2D"
|
421 |
+
input: "Relu_3"
|
422 |
+
input: "layer_128_1_conv2/weights"
|
423 |
+
attr {
|
424 |
+
key: "dilations"
|
425 |
+
value {
|
426 |
+
list {
|
427 |
+
i: 1
|
428 |
+
i: 1
|
429 |
+
i: 1
|
430 |
+
i: 1
|
431 |
+
}
|
432 |
+
}
|
433 |
+
}
|
434 |
+
attr {
|
435 |
+
key: "padding"
|
436 |
+
value {
|
437 |
+
s: "SAME"
|
438 |
+
}
|
439 |
+
}
|
440 |
+
attr {
|
441 |
+
key: "strides"
|
442 |
+
value {
|
443 |
+
list {
|
444 |
+
i: 1
|
445 |
+
i: 1
|
446 |
+
i: 1
|
447 |
+
i: 1
|
448 |
+
}
|
449 |
+
}
|
450 |
+
}
|
451 |
+
}
|
452 |
+
node {
|
453 |
+
name: "add_1"
|
454 |
+
op: "Add"
|
455 |
+
input: "layer_128_1_conv2/Conv2D"
|
456 |
+
input: "layer_128_1_conv_expand_h/Conv2D"
|
457 |
+
}
|
458 |
+
node {
|
459 |
+
name: "layer_256_1_bn1/FusedBatchNorm"
|
460 |
+
op: "FusedBatchNorm"
|
461 |
+
input: "add_1"
|
462 |
+
input: "layer_256_1_bn1/gamma"
|
463 |
+
input: "layer_256_1_bn1/beta"
|
464 |
+
input: "layer_256_1_bn1/mean"
|
465 |
+
input: "layer_256_1_bn1/std"
|
466 |
+
attr {
|
467 |
+
key: "epsilon"
|
468 |
+
value {
|
469 |
+
f: 1.00099996416e-05
|
470 |
+
}
|
471 |
+
}
|
472 |
+
}
|
473 |
+
node {
|
474 |
+
name: "layer_256_1_scale1/Mul"
|
475 |
+
op: "Mul"
|
476 |
+
input: "layer_256_1_bn1/FusedBatchNorm"
|
477 |
+
input: "layer_256_1_scale1/mul"
|
478 |
+
}
|
479 |
+
node {
|
480 |
+
name: "layer_256_1_scale1/BiasAdd"
|
481 |
+
op: "BiasAdd"
|
482 |
+
input: "layer_256_1_scale1/Mul"
|
483 |
+
input: "layer_256_1_scale1/add"
|
484 |
+
}
|
485 |
+
node {
|
486 |
+
name: "Relu_4"
|
487 |
+
op: "Relu"
|
488 |
+
input: "layer_256_1_scale1/BiasAdd"
|
489 |
+
}
|
490 |
+
node {
|
491 |
+
name: "SpaceToBatchND_1/paddings"
|
492 |
+
op: "Const"
|
493 |
+
attr {
|
494 |
+
key: "value"
|
495 |
+
value {
|
496 |
+
tensor {
|
497 |
+
dtype: DT_INT32
|
498 |
+
tensor_shape {
|
499 |
+
dim {
|
500 |
+
size: 2
|
501 |
+
}
|
502 |
+
dim {
|
503 |
+
size: 2
|
504 |
+
}
|
505 |
+
}
|
506 |
+
int_val: 1
|
507 |
+
int_val: 1
|
508 |
+
int_val: 1
|
509 |
+
int_val: 1
|
510 |
+
}
|
511 |
+
}
|
512 |
+
}
|
513 |
+
}
|
514 |
+
node {
|
515 |
+
name: "layer_256_1_conv_expand/Conv2D"
|
516 |
+
op: "Conv2D"
|
517 |
+
input: "Relu_4"
|
518 |
+
input: "layer_256_1_conv_expand/weights"
|
519 |
+
attr {
|
520 |
+
key: "dilations"
|
521 |
+
value {
|
522 |
+
list {
|
523 |
+
i: 1
|
524 |
+
i: 1
|
525 |
+
i: 1
|
526 |
+
i: 1
|
527 |
+
}
|
528 |
+
}
|
529 |
+
}
|
530 |
+
attr {
|
531 |
+
key: "padding"
|
532 |
+
value {
|
533 |
+
s: "SAME"
|
534 |
+
}
|
535 |
+
}
|
536 |
+
attr {
|
537 |
+
key: "strides"
|
538 |
+
value {
|
539 |
+
list {
|
540 |
+
i: 1
|
541 |
+
i: 2
|
542 |
+
i: 2
|
543 |
+
i: 1
|
544 |
+
}
|
545 |
+
}
|
546 |
+
}
|
547 |
+
}
|
548 |
+
node {
|
549 |
+
name: "conv4_3_norm/l2_normalize"
|
550 |
+
op: "L2Normalize"
|
551 |
+
input: "Relu_4:0"
|
552 |
+
input: "conv4_3_norm/l2_normalize/Sum/reduction_indices"
|
553 |
+
}
|
554 |
+
node {
|
555 |
+
name: "conv4_3_norm/mul_1"
|
556 |
+
op: "Mul"
|
557 |
+
input: "conv4_3_norm/l2_normalize"
|
558 |
+
input: "conv4_3_norm/mul"
|
559 |
+
}
|
560 |
+
node {
|
561 |
+
name: "conv4_3_norm_mbox_loc/Conv2D"
|
562 |
+
op: "Conv2D"
|
563 |
+
input: "conv4_3_norm/mul_1"
|
564 |
+
input: "conv4_3_norm_mbox_loc/weights"
|
565 |
+
attr {
|
566 |
+
key: "dilations"
|
567 |
+
value {
|
568 |
+
list {
|
569 |
+
i: 1
|
570 |
+
i: 1
|
571 |
+
i: 1
|
572 |
+
i: 1
|
573 |
+
}
|
574 |
+
}
|
575 |
+
}
|
576 |
+
attr {
|
577 |
+
key: "padding"
|
578 |
+
value {
|
579 |
+
s: "SAME"
|
580 |
+
}
|
581 |
+
}
|
582 |
+
attr {
|
583 |
+
key: "strides"
|
584 |
+
value {
|
585 |
+
list {
|
586 |
+
i: 1
|
587 |
+
i: 1
|
588 |
+
i: 1
|
589 |
+
i: 1
|
590 |
+
}
|
591 |
+
}
|
592 |
+
}
|
593 |
+
}
|
594 |
+
node {
|
595 |
+
name: "conv4_3_norm_mbox_loc/BiasAdd"
|
596 |
+
op: "BiasAdd"
|
597 |
+
input: "conv4_3_norm_mbox_loc/Conv2D"
|
598 |
+
input: "conv4_3_norm_mbox_loc/bias"
|
599 |
+
}
|
600 |
+
node {
|
601 |
+
name: "flatten/Reshape"
|
602 |
+
op: "Flatten"
|
603 |
+
input: "conv4_3_norm_mbox_loc/BiasAdd"
|
604 |
+
}
|
605 |
+
node {
|
606 |
+
name: "conv4_3_norm_mbox_conf/Conv2D"
|
607 |
+
op: "Conv2D"
|
608 |
+
input: "conv4_3_norm/mul_1"
|
609 |
+
input: "conv4_3_norm_mbox_conf/weights"
|
610 |
+
attr {
|
611 |
+
key: "dilations"
|
612 |
+
value {
|
613 |
+
list {
|
614 |
+
i: 1
|
615 |
+
i: 1
|
616 |
+
i: 1
|
617 |
+
i: 1
|
618 |
+
}
|
619 |
+
}
|
620 |
+
}
|
621 |
+
attr {
|
622 |
+
key: "padding"
|
623 |
+
value {
|
624 |
+
s: "SAME"
|
625 |
+
}
|
626 |
+
}
|
627 |
+
attr {
|
628 |
+
key: "strides"
|
629 |
+
value {
|
630 |
+
list {
|
631 |
+
i: 1
|
632 |
+
i: 1
|
633 |
+
i: 1
|
634 |
+
i: 1
|
635 |
+
}
|
636 |
+
}
|
637 |
+
}
|
638 |
+
}
|
639 |
+
node {
|
640 |
+
name: "conv4_3_norm_mbox_conf/BiasAdd"
|
641 |
+
op: "BiasAdd"
|
642 |
+
input: "conv4_3_norm_mbox_conf/Conv2D"
|
643 |
+
input: "conv4_3_norm_mbox_conf/bias"
|
644 |
+
}
|
645 |
+
node {
|
646 |
+
name: "flatten_6/Reshape"
|
647 |
+
op: "Flatten"
|
648 |
+
input: "conv4_3_norm_mbox_conf/BiasAdd"
|
649 |
+
}
|
650 |
+
node {
|
651 |
+
name: "Pad_1"
|
652 |
+
op: "SpaceToBatchND"
|
653 |
+
input: "Relu_4"
|
654 |
+
input: "SpaceToBatchND/block_shape"
|
655 |
+
input: "SpaceToBatchND_1/paddings"
|
656 |
+
}
|
657 |
+
node {
|
658 |
+
name: "layer_256_1_conv1/Conv2D"
|
659 |
+
op: "Conv2D"
|
660 |
+
input: "Pad_1"
|
661 |
+
input: "layer_256_1_conv1/weights"
|
662 |
+
attr {
|
663 |
+
key: "dilations"
|
664 |
+
value {
|
665 |
+
list {
|
666 |
+
i: 1
|
667 |
+
i: 1
|
668 |
+
i: 1
|
669 |
+
i: 1
|
670 |
+
}
|
671 |
+
}
|
672 |
+
}
|
673 |
+
attr {
|
674 |
+
key: "padding"
|
675 |
+
value {
|
676 |
+
s: "VALID"
|
677 |
+
}
|
678 |
+
}
|
679 |
+
attr {
|
680 |
+
key: "strides"
|
681 |
+
value {
|
682 |
+
list {
|
683 |
+
i: 1
|
684 |
+
i: 2
|
685 |
+
i: 2
|
686 |
+
i: 1
|
687 |
+
}
|
688 |
+
}
|
689 |
+
}
|
690 |
+
}
|
691 |
+
node {
|
692 |
+
name: "layer_256_1_bn2/FusedBatchNorm"
|
693 |
+
op: "BiasAdd"
|
694 |
+
input: "layer_256_1_conv1/Conv2D"
|
695 |
+
input: "layer_256_1_conv1/Conv2D_bn_offset"
|
696 |
+
}
|
697 |
+
node {
|
698 |
+
name: "BatchToSpaceND_1"
|
699 |
+
op: "BatchToSpaceND"
|
700 |
+
input: "layer_256_1_bn2/FusedBatchNorm"
|
701 |
+
}
|
702 |
+
node {
|
703 |
+
name: "layer_256_1_scale2/Mul"
|
704 |
+
op: "Mul"
|
705 |
+
input: "BatchToSpaceND_1"
|
706 |
+
input: "layer_256_1_scale2/mul"
|
707 |
+
}
|
708 |
+
node {
|
709 |
+
name: "layer_256_1_scale2/BiasAdd"
|
710 |
+
op: "BiasAdd"
|
711 |
+
input: "layer_256_1_scale2/Mul"
|
712 |
+
input: "layer_256_1_scale2/add"
|
713 |
+
}
|
714 |
+
node {
|
715 |
+
name: "Relu_5"
|
716 |
+
op: "Relu"
|
717 |
+
input: "layer_256_1_scale2/BiasAdd"
|
718 |
+
}
|
719 |
+
node {
|
720 |
+
name: "layer_256_1_conv2/Conv2D"
|
721 |
+
op: "Conv2D"
|
722 |
+
input: "Relu_5"
|
723 |
+
input: "layer_256_1_conv2/weights"
|
724 |
+
attr {
|
725 |
+
key: "dilations"
|
726 |
+
value {
|
727 |
+
list {
|
728 |
+
i: 1
|
729 |
+
i: 1
|
730 |
+
i: 1
|
731 |
+
i: 1
|
732 |
+
}
|
733 |
+
}
|
734 |
+
}
|
735 |
+
attr {
|
736 |
+
key: "padding"
|
737 |
+
value {
|
738 |
+
s: "SAME"
|
739 |
+
}
|
740 |
+
}
|
741 |
+
attr {
|
742 |
+
key: "strides"
|
743 |
+
value {
|
744 |
+
list {
|
745 |
+
i: 1
|
746 |
+
i: 1
|
747 |
+
i: 1
|
748 |
+
i: 1
|
749 |
+
}
|
750 |
+
}
|
751 |
+
}
|
752 |
+
}
|
753 |
+
node {
|
754 |
+
name: "add_2"
|
755 |
+
op: "Add"
|
756 |
+
input: "layer_256_1_conv2/Conv2D"
|
757 |
+
input: "layer_256_1_conv_expand/Conv2D"
|
758 |
+
}
|
759 |
+
node {
|
760 |
+
name: "layer_512_1_bn1/FusedBatchNorm"
|
761 |
+
op: "FusedBatchNorm"
|
762 |
+
input: "add_2"
|
763 |
+
input: "layer_512_1_bn1/gamma"
|
764 |
+
input: "layer_512_1_bn1/beta"
|
765 |
+
input: "layer_512_1_bn1/mean"
|
766 |
+
input: "layer_512_1_bn1/std"
|
767 |
+
attr {
|
768 |
+
key: "epsilon"
|
769 |
+
value {
|
770 |
+
f: 1.00099996416e-05
|
771 |
+
}
|
772 |
+
}
|
773 |
+
}
|
774 |
+
node {
|
775 |
+
name: "layer_512_1_scale1/Mul"
|
776 |
+
op: "Mul"
|
777 |
+
input: "layer_512_1_bn1/FusedBatchNorm"
|
778 |
+
input: "layer_512_1_scale1/mul"
|
779 |
+
}
|
780 |
+
node {
|
781 |
+
name: "layer_512_1_scale1/BiasAdd"
|
782 |
+
op: "BiasAdd"
|
783 |
+
input: "layer_512_1_scale1/Mul"
|
784 |
+
input: "layer_512_1_scale1/add"
|
785 |
+
}
|
786 |
+
node {
|
787 |
+
name: "Relu_6"
|
788 |
+
op: "Relu"
|
789 |
+
input: "layer_512_1_scale1/BiasAdd"
|
790 |
+
}
|
791 |
+
node {
|
792 |
+
name: "layer_512_1_conv_expand_h/Conv2D"
|
793 |
+
op: "Conv2D"
|
794 |
+
input: "Relu_6"
|
795 |
+
input: "layer_512_1_conv_expand_h/weights"
|
796 |
+
attr {
|
797 |
+
key: "dilations"
|
798 |
+
value {
|
799 |
+
list {
|
800 |
+
i: 1
|
801 |
+
i: 1
|
802 |
+
i: 1
|
803 |
+
i: 1
|
804 |
+
}
|
805 |
+
}
|
806 |
+
}
|
807 |
+
attr {
|
808 |
+
key: "padding"
|
809 |
+
value {
|
810 |
+
s: "SAME"
|
811 |
+
}
|
812 |
+
}
|
813 |
+
attr {
|
814 |
+
key: "strides"
|
815 |
+
value {
|
816 |
+
list {
|
817 |
+
i: 1
|
818 |
+
i: 1
|
819 |
+
i: 1
|
820 |
+
i: 1
|
821 |
+
}
|
822 |
+
}
|
823 |
+
}
|
824 |
+
}
|
825 |
+
node {
|
826 |
+
name: "layer_512_1_conv1_h/Conv2D"
|
827 |
+
op: "Conv2D"
|
828 |
+
input: "Relu_6"
|
829 |
+
input: "layer_512_1_conv1_h/weights"
|
830 |
+
attr {
|
831 |
+
key: "dilations"
|
832 |
+
value {
|
833 |
+
list {
|
834 |
+
i: 1
|
835 |
+
i: 1
|
836 |
+
i: 1
|
837 |
+
i: 1
|
838 |
+
}
|
839 |
+
}
|
840 |
+
}
|
841 |
+
attr {
|
842 |
+
key: "padding"
|
843 |
+
value {
|
844 |
+
s: "SAME"
|
845 |
+
}
|
846 |
+
}
|
847 |
+
attr {
|
848 |
+
key: "strides"
|
849 |
+
value {
|
850 |
+
list {
|
851 |
+
i: 1
|
852 |
+
i: 1
|
853 |
+
i: 1
|
854 |
+
i: 1
|
855 |
+
}
|
856 |
+
}
|
857 |
+
}
|
858 |
+
}
|
859 |
+
node {
|
860 |
+
name: "layer_512_1_bn2_h/FusedBatchNorm"
|
861 |
+
op: "BiasAdd"
|
862 |
+
input: "layer_512_1_conv1_h/Conv2D"
|
863 |
+
input: "layer_512_1_conv1_h/Conv2D_bn_offset"
|
864 |
+
}
|
865 |
+
node {
|
866 |
+
name: "layer_512_1_scale2_h/Mul"
|
867 |
+
op: "Mul"
|
868 |
+
input: "layer_512_1_bn2_h/FusedBatchNorm"
|
869 |
+
input: "layer_512_1_scale2_h/mul"
|
870 |
+
}
|
871 |
+
node {
|
872 |
+
name: "layer_512_1_scale2_h/BiasAdd"
|
873 |
+
op: "BiasAdd"
|
874 |
+
input: "layer_512_1_scale2_h/Mul"
|
875 |
+
input: "layer_512_1_scale2_h/add"
|
876 |
+
}
|
877 |
+
node {
|
878 |
+
name: "Relu_7"
|
879 |
+
op: "Relu"
|
880 |
+
input: "layer_512_1_scale2_h/BiasAdd"
|
881 |
+
}
|
882 |
+
node {
|
883 |
+
name: "layer_512_1_conv2_h/convolution/SpaceToBatchND"
|
884 |
+
op: "SpaceToBatchND"
|
885 |
+
input: "Relu_7"
|
886 |
+
input: "layer_512_1_conv2_h/convolution/SpaceToBatchND/block_shape"
|
887 |
+
input: "layer_512_1_conv2_h/convolution/SpaceToBatchND/paddings"
|
888 |
+
}
|
889 |
+
node {
|
890 |
+
name: "layer_512_1_conv2_h/convolution"
|
891 |
+
op: "Conv2D"
|
892 |
+
input: "layer_512_1_conv2_h/convolution/SpaceToBatchND"
|
893 |
+
input: "layer_512_1_conv2_h/weights"
|
894 |
+
attr {
|
895 |
+
key: "dilations"
|
896 |
+
value {
|
897 |
+
list {
|
898 |
+
i: 1
|
899 |
+
i: 1
|
900 |
+
i: 1
|
901 |
+
i: 1
|
902 |
+
}
|
903 |
+
}
|
904 |
+
}
|
905 |
+
attr {
|
906 |
+
key: "padding"
|
907 |
+
value {
|
908 |
+
s: "VALID"
|
909 |
+
}
|
910 |
+
}
|
911 |
+
attr {
|
912 |
+
key: "strides"
|
913 |
+
value {
|
914 |
+
list {
|
915 |
+
i: 1
|
916 |
+
i: 1
|
917 |
+
i: 1
|
918 |
+
i: 1
|
919 |
+
}
|
920 |
+
}
|
921 |
+
}
|
922 |
+
}
|
923 |
+
node {
|
924 |
+
name: "layer_512_1_conv2_h/convolution/BatchToSpaceND"
|
925 |
+
op: "BatchToSpaceND"
|
926 |
+
input: "layer_512_1_conv2_h/convolution"
|
927 |
+
input: "layer_512_1_conv2_h/convolution/BatchToSpaceND/block_shape"
|
928 |
+
input: "layer_512_1_conv2_h/convolution/BatchToSpaceND/crops"
|
929 |
+
}
|
930 |
+
node {
|
931 |
+
name: "add_3"
|
932 |
+
op: "Add"
|
933 |
+
input: "layer_512_1_conv2_h/convolution/BatchToSpaceND"
|
934 |
+
input: "layer_512_1_conv_expand_h/Conv2D"
|
935 |
+
}
|
936 |
+
node {
|
937 |
+
name: "last_bn_h/FusedBatchNorm"
|
938 |
+
op: "FusedBatchNorm"
|
939 |
+
input: "add_3"
|
940 |
+
input: "last_bn_h/gamma"
|
941 |
+
input: "last_bn_h/beta"
|
942 |
+
input: "last_bn_h/mean"
|
943 |
+
input: "last_bn_h/std"
|
944 |
+
attr {
|
945 |
+
key: "epsilon"
|
946 |
+
value {
|
947 |
+
f: 1.00099996416e-05
|
948 |
+
}
|
949 |
+
}
|
950 |
+
}
|
951 |
+
node {
|
952 |
+
name: "last_scale_h/Mul"
|
953 |
+
op: "Mul"
|
954 |
+
input: "last_bn_h/FusedBatchNorm"
|
955 |
+
input: "last_scale_h/mul"
|
956 |
+
}
|
957 |
+
node {
|
958 |
+
name: "last_scale_h/BiasAdd"
|
959 |
+
op: "BiasAdd"
|
960 |
+
input: "last_scale_h/Mul"
|
961 |
+
input: "last_scale_h/add"
|
962 |
+
}
|
963 |
+
node {
|
964 |
+
name: "last_relu"
|
965 |
+
op: "Relu"
|
966 |
+
input: "last_scale_h/BiasAdd"
|
967 |
+
}
|
968 |
+
node {
|
969 |
+
name: "conv6_1_h/Conv2D"
|
970 |
+
op: "Conv2D"
|
971 |
+
input: "last_relu"
|
972 |
+
input: "conv6_1_h/weights"
|
973 |
+
attr {
|
974 |
+
key: "dilations"
|
975 |
+
value {
|
976 |
+
list {
|
977 |
+
i: 1
|
978 |
+
i: 1
|
979 |
+
i: 1
|
980 |
+
i: 1
|
981 |
+
}
|
982 |
+
}
|
983 |
+
}
|
984 |
+
attr {
|
985 |
+
key: "padding"
|
986 |
+
value {
|
987 |
+
s: "SAME"
|
988 |
+
}
|
989 |
+
}
|
990 |
+
attr {
|
991 |
+
key: "strides"
|
992 |
+
value {
|
993 |
+
list {
|
994 |
+
i: 1
|
995 |
+
i: 1
|
996 |
+
i: 1
|
997 |
+
i: 1
|
998 |
+
}
|
999 |
+
}
|
1000 |
+
}
|
1001 |
+
}
|
1002 |
+
node {
|
1003 |
+
name: "conv6_1_h/BiasAdd"
|
1004 |
+
op: "BiasAdd"
|
1005 |
+
input: "conv6_1_h/Conv2D"
|
1006 |
+
input: "conv6_1_h/bias"
|
1007 |
+
}
|
1008 |
+
node {
|
1009 |
+
name: "conv6_1_h/Relu"
|
1010 |
+
op: "Relu"
|
1011 |
+
input: "conv6_1_h/BiasAdd"
|
1012 |
+
}
|
1013 |
+
node {
|
1014 |
+
name: "conv6_2_h/Conv2D"
|
1015 |
+
op: "Conv2D"
|
1016 |
+
input: "conv6_1_h/Relu"
|
1017 |
+
input: "conv6_2_h/weights"
|
1018 |
+
attr {
|
1019 |
+
key: "dilations"
|
1020 |
+
value {
|
1021 |
+
list {
|
1022 |
+
i: 1
|
1023 |
+
i: 1
|
1024 |
+
i: 1
|
1025 |
+
i: 1
|
1026 |
+
}
|
1027 |
+
}
|
1028 |
+
}
|
1029 |
+
attr {
|
1030 |
+
key: "padding"
|
1031 |
+
value {
|
1032 |
+
s: "SAME"
|
1033 |
+
}
|
1034 |
+
}
|
1035 |
+
attr {
|
1036 |
+
key: "strides"
|
1037 |
+
value {
|
1038 |
+
list {
|
1039 |
+
i: 1
|
1040 |
+
i: 2
|
1041 |
+
i: 2
|
1042 |
+
i: 1
|
1043 |
+
}
|
1044 |
+
}
|
1045 |
+
}
|
1046 |
+
}
|
1047 |
+
node {
|
1048 |
+
name: "conv6_2_h/BiasAdd"
|
1049 |
+
op: "BiasAdd"
|
1050 |
+
input: "conv6_2_h/Conv2D"
|
1051 |
+
input: "conv6_2_h/bias"
|
1052 |
+
}
|
1053 |
+
node {
|
1054 |
+
name: "conv6_2_h/Relu"
|
1055 |
+
op: "Relu"
|
1056 |
+
input: "conv6_2_h/BiasAdd"
|
1057 |
+
}
|
1058 |
+
node {
|
1059 |
+
name: "conv7_1_h/Conv2D"
|
1060 |
+
op: "Conv2D"
|
1061 |
+
input: "conv6_2_h/Relu"
|
1062 |
+
input: "conv7_1_h/weights"
|
1063 |
+
attr {
|
1064 |
+
key: "dilations"
|
1065 |
+
value {
|
1066 |
+
list {
|
1067 |
+
i: 1
|
1068 |
+
i: 1
|
1069 |
+
i: 1
|
1070 |
+
i: 1
|
1071 |
+
}
|
1072 |
+
}
|
1073 |
+
}
|
1074 |
+
attr {
|
1075 |
+
key: "padding"
|
1076 |
+
value {
|
1077 |
+
s: "SAME"
|
1078 |
+
}
|
1079 |
+
}
|
1080 |
+
attr {
|
1081 |
+
key: "strides"
|
1082 |
+
value {
|
1083 |
+
list {
|
1084 |
+
i: 1
|
1085 |
+
i: 1
|
1086 |
+
i: 1
|
1087 |
+
i: 1
|
1088 |
+
}
|
1089 |
+
}
|
1090 |
+
}
|
1091 |
+
}
|
1092 |
+
node {
|
1093 |
+
name: "conv7_1_h/BiasAdd"
|
1094 |
+
op: "BiasAdd"
|
1095 |
+
input: "conv7_1_h/Conv2D"
|
1096 |
+
input: "conv7_1_h/bias"
|
1097 |
+
}
|
1098 |
+
node {
|
1099 |
+
name: "conv7_1_h/Relu"
|
1100 |
+
op: "Relu"
|
1101 |
+
input: "conv7_1_h/BiasAdd"
|
1102 |
+
}
|
1103 |
+
node {
|
1104 |
+
name: "Pad_2"
|
1105 |
+
op: "SpaceToBatchND"
|
1106 |
+
input: "conv7_1_h/Relu"
|
1107 |
+
input: "SpaceToBatchND/block_shape"
|
1108 |
+
input: "SpaceToBatchND_1/paddings"
|
1109 |
+
}
|
1110 |
+
node {
|
1111 |
+
name: "conv7_2_h/Conv2D"
|
1112 |
+
op: "Conv2D"
|
1113 |
+
input: "Pad_2"
|
1114 |
+
input: "conv7_2_h/weights"
|
1115 |
+
attr {
|
1116 |
+
key: "dilations"
|
1117 |
+
value {
|
1118 |
+
list {
|
1119 |
+
i: 1
|
1120 |
+
i: 1
|
1121 |
+
i: 1
|
1122 |
+
i: 1
|
1123 |
+
}
|
1124 |
+
}
|
1125 |
+
}
|
1126 |
+
attr {
|
1127 |
+
key: "padding"
|
1128 |
+
value {
|
1129 |
+
s: "VALID"
|
1130 |
+
}
|
1131 |
+
}
|
1132 |
+
attr {
|
1133 |
+
key: "strides"
|
1134 |
+
value {
|
1135 |
+
list {
|
1136 |
+
i: 1
|
1137 |
+
i: 2
|
1138 |
+
i: 2
|
1139 |
+
i: 1
|
1140 |
+
}
|
1141 |
+
}
|
1142 |
+
}
|
1143 |
+
}
|
1144 |
+
node {
|
1145 |
+
name: "conv7_2_h/BiasAdd"
|
1146 |
+
op: "BiasAdd"
|
1147 |
+
input: "conv7_2_h/Conv2D"
|
1148 |
+
input: "conv7_2_h/bias"
|
1149 |
+
}
|
1150 |
+
node {
|
1151 |
+
name: "BatchToSpaceND_2"
|
1152 |
+
op: "BatchToSpaceND"
|
1153 |
+
input: "conv7_2_h/BiasAdd"
|
1154 |
+
}
|
1155 |
+
node {
|
1156 |
+
name: "conv7_2_h/Relu"
|
1157 |
+
op: "Relu"
|
1158 |
+
input: "BatchToSpaceND_2"
|
1159 |
+
}
|
1160 |
+
node {
|
1161 |
+
name: "conv8_1_h/Conv2D"
|
1162 |
+
op: "Conv2D"
|
1163 |
+
input: "conv7_2_h/Relu"
|
1164 |
+
input: "conv8_1_h/weights"
|
1165 |
+
attr {
|
1166 |
+
key: "dilations"
|
1167 |
+
value {
|
1168 |
+
list {
|
1169 |
+
i: 1
|
1170 |
+
i: 1
|
1171 |
+
i: 1
|
1172 |
+
i: 1
|
1173 |
+
}
|
1174 |
+
}
|
1175 |
+
}
|
1176 |
+
attr {
|
1177 |
+
key: "padding"
|
1178 |
+
value {
|
1179 |
+
s: "SAME"
|
1180 |
+
}
|
1181 |
+
}
|
1182 |
+
attr {
|
1183 |
+
key: "strides"
|
1184 |
+
value {
|
1185 |
+
list {
|
1186 |
+
i: 1
|
1187 |
+
i: 1
|
1188 |
+
i: 1
|
1189 |
+
i: 1
|
1190 |
+
}
|
1191 |
+
}
|
1192 |
+
}
|
1193 |
+
}
|
1194 |
+
node {
|
1195 |
+
name: "conv8_1_h/BiasAdd"
|
1196 |
+
op: "BiasAdd"
|
1197 |
+
input: "conv8_1_h/Conv2D"
|
1198 |
+
input: "conv8_1_h/bias"
|
1199 |
+
}
|
1200 |
+
node {
|
1201 |
+
name: "conv8_1_h/Relu"
|
1202 |
+
op: "Relu"
|
1203 |
+
input: "conv8_1_h/BiasAdd"
|
1204 |
+
}
|
1205 |
+
node {
|
1206 |
+
name: "conv8_2_h/Conv2D"
|
1207 |
+
op: "Conv2D"
|
1208 |
+
input: "conv8_1_h/Relu"
|
1209 |
+
input: "conv8_2_h/weights"
|
1210 |
+
attr {
|
1211 |
+
key: "dilations"
|
1212 |
+
value {
|
1213 |
+
list {
|
1214 |
+
i: 1
|
1215 |
+
i: 1
|
1216 |
+
i: 1
|
1217 |
+
i: 1
|
1218 |
+
}
|
1219 |
+
}
|
1220 |
+
}
|
1221 |
+
attr {
|
1222 |
+
key: "padding"
|
1223 |
+
value {
|
1224 |
+
s: "SAME"
|
1225 |
+
}
|
1226 |
+
}
|
1227 |
+
attr {
|
1228 |
+
key: "strides"
|
1229 |
+
value {
|
1230 |
+
list {
|
1231 |
+
i: 1
|
1232 |
+
i: 1
|
1233 |
+
i: 1
|
1234 |
+
i: 1
|
1235 |
+
}
|
1236 |
+
}
|
1237 |
+
}
|
1238 |
+
}
|
1239 |
+
node {
|
1240 |
+
name: "conv8_2_h/BiasAdd"
|
1241 |
+
op: "BiasAdd"
|
1242 |
+
input: "conv8_2_h/Conv2D"
|
1243 |
+
input: "conv8_2_h/bias"
|
1244 |
+
}
|
1245 |
+
node {
|
1246 |
+
name: "conv8_2_h/Relu"
|
1247 |
+
op: "Relu"
|
1248 |
+
input: "conv8_2_h/BiasAdd"
|
1249 |
+
}
|
1250 |
+
node {
|
1251 |
+
name: "conv9_1_h/Conv2D"
|
1252 |
+
op: "Conv2D"
|
1253 |
+
input: "conv8_2_h/Relu"
|
1254 |
+
input: "conv9_1_h/weights"
|
1255 |
+
attr {
|
1256 |
+
key: "dilations"
|
1257 |
+
value {
|
1258 |
+
list {
|
1259 |
+
i: 1
|
1260 |
+
i: 1
|
1261 |
+
i: 1
|
1262 |
+
i: 1
|
1263 |
+
}
|
1264 |
+
}
|
1265 |
+
}
|
1266 |
+
attr {
|
1267 |
+
key: "padding"
|
1268 |
+
value {
|
1269 |
+
s: "SAME"
|
1270 |
+
}
|
1271 |
+
}
|
1272 |
+
attr {
|
1273 |
+
key: "strides"
|
1274 |
+
value {
|
1275 |
+
list {
|
1276 |
+
i: 1
|
1277 |
+
i: 1
|
1278 |
+
i: 1
|
1279 |
+
i: 1
|
1280 |
+
}
|
1281 |
+
}
|
1282 |
+
}
|
1283 |
+
}
|
1284 |
+
node {
|
1285 |
+
name: "conv9_1_h/BiasAdd"
|
1286 |
+
op: "BiasAdd"
|
1287 |
+
input: "conv9_1_h/Conv2D"
|
1288 |
+
input: "conv9_1_h/bias"
|
1289 |
+
}
|
1290 |
+
node {
|
1291 |
+
name: "conv9_1_h/Relu"
|
1292 |
+
op: "Relu"
|
1293 |
+
input: "conv9_1_h/BiasAdd"
|
1294 |
+
}
|
1295 |
+
node {
|
1296 |
+
name: "conv9_2_h/Conv2D"
|
1297 |
+
op: "Conv2D"
|
1298 |
+
input: "conv9_1_h/Relu"
|
1299 |
+
input: "conv9_2_h/weights"
|
1300 |
+
attr {
|
1301 |
+
key: "dilations"
|
1302 |
+
value {
|
1303 |
+
list {
|
1304 |
+
i: 1
|
1305 |
+
i: 1
|
1306 |
+
i: 1
|
1307 |
+
i: 1
|
1308 |
+
}
|
1309 |
+
}
|
1310 |
+
}
|
1311 |
+
attr {
|
1312 |
+
key: "padding"
|
1313 |
+
value {
|
1314 |
+
s: "SAME"
|
1315 |
+
}
|
1316 |
+
}
|
1317 |
+
attr {
|
1318 |
+
key: "strides"
|
1319 |
+
value {
|
1320 |
+
list {
|
1321 |
+
i: 1
|
1322 |
+
i: 1
|
1323 |
+
i: 1
|
1324 |
+
i: 1
|
1325 |
+
}
|
1326 |
+
}
|
1327 |
+
}
|
1328 |
+
}
|
1329 |
+
node {
|
1330 |
+
name: "conv9_2_h/BiasAdd"
|
1331 |
+
op: "BiasAdd"
|
1332 |
+
input: "conv9_2_h/Conv2D"
|
1333 |
+
input: "conv9_2_h/bias"
|
1334 |
+
}
|
1335 |
+
node {
|
1336 |
+
name: "conv9_2_h/Relu"
|
1337 |
+
op: "Relu"
|
1338 |
+
input: "conv9_2_h/BiasAdd"
|
1339 |
+
}
|
1340 |
+
node {
|
1341 |
+
name: "conv9_2_mbox_loc/Conv2D"
|
1342 |
+
op: "Conv2D"
|
1343 |
+
input: "conv9_2_h/Relu"
|
1344 |
+
input: "conv9_2_mbox_loc/weights"
|
1345 |
+
attr {
|
1346 |
+
key: "dilations"
|
1347 |
+
value {
|
1348 |
+
list {
|
1349 |
+
i: 1
|
1350 |
+
i: 1
|
1351 |
+
i: 1
|
1352 |
+
i: 1
|
1353 |
+
}
|
1354 |
+
}
|
1355 |
+
}
|
1356 |
+
attr {
|
1357 |
+
key: "padding"
|
1358 |
+
value {
|
1359 |
+
s: "SAME"
|
1360 |
+
}
|
1361 |
+
}
|
1362 |
+
attr {
|
1363 |
+
key: "strides"
|
1364 |
+
value {
|
1365 |
+
list {
|
1366 |
+
i: 1
|
1367 |
+
i: 1
|
1368 |
+
i: 1
|
1369 |
+
i: 1
|
1370 |
+
}
|
1371 |
+
}
|
1372 |
+
}
|
1373 |
+
}
|
1374 |
+
node {
|
1375 |
+
name: "conv9_2_mbox_loc/BiasAdd"
|
1376 |
+
op: "BiasAdd"
|
1377 |
+
input: "conv9_2_mbox_loc/Conv2D"
|
1378 |
+
input: "conv9_2_mbox_loc/bias"
|
1379 |
+
}
|
1380 |
+
node {
|
1381 |
+
name: "flatten_5/Reshape"
|
1382 |
+
op: "Flatten"
|
1383 |
+
input: "conv9_2_mbox_loc/BiasAdd"
|
1384 |
+
}
|
1385 |
+
node {
|
1386 |
+
name: "conv9_2_mbox_conf/Conv2D"
|
1387 |
+
op: "Conv2D"
|
1388 |
+
input: "conv9_2_h/Relu"
|
1389 |
+
input: "conv9_2_mbox_conf/weights"
|
1390 |
+
attr {
|
1391 |
+
key: "dilations"
|
1392 |
+
value {
|
1393 |
+
list {
|
1394 |
+
i: 1
|
1395 |
+
i: 1
|
1396 |
+
i: 1
|
1397 |
+
i: 1
|
1398 |
+
}
|
1399 |
+
}
|
1400 |
+
}
|
1401 |
+
attr {
|
1402 |
+
key: "padding"
|
1403 |
+
value {
|
1404 |
+
s: "SAME"
|
1405 |
+
}
|
1406 |
+
}
|
1407 |
+
attr {
|
1408 |
+
key: "strides"
|
1409 |
+
value {
|
1410 |
+
list {
|
1411 |
+
i: 1
|
1412 |
+
i: 1
|
1413 |
+
i: 1
|
1414 |
+
i: 1
|
1415 |
+
}
|
1416 |
+
}
|
1417 |
+
}
|
1418 |
+
}
|
1419 |
+
node {
|
1420 |
+
name: "conv9_2_mbox_conf/BiasAdd"
|
1421 |
+
op: "BiasAdd"
|
1422 |
+
input: "conv9_2_mbox_conf/Conv2D"
|
1423 |
+
input: "conv9_2_mbox_conf/bias"
|
1424 |
+
}
|
1425 |
+
node {
|
1426 |
+
name: "flatten_11/Reshape"
|
1427 |
+
op: "Flatten"
|
1428 |
+
input: "conv9_2_mbox_conf/BiasAdd"
|
1429 |
+
}
|
1430 |
+
node {
|
1431 |
+
name: "conv8_2_mbox_loc/Conv2D"
|
1432 |
+
op: "Conv2D"
|
1433 |
+
input: "conv8_2_h/Relu"
|
1434 |
+
input: "conv8_2_mbox_loc/weights"
|
1435 |
+
attr {
|
1436 |
+
key: "dilations"
|
1437 |
+
value {
|
1438 |
+
list {
|
1439 |
+
i: 1
|
1440 |
+
i: 1
|
1441 |
+
i: 1
|
1442 |
+
i: 1
|
1443 |
+
}
|
1444 |
+
}
|
1445 |
+
}
|
1446 |
+
attr {
|
1447 |
+
key: "padding"
|
1448 |
+
value {
|
1449 |
+
s: "SAME"
|
1450 |
+
}
|
1451 |
+
}
|
1452 |
+
attr {
|
1453 |
+
key: "strides"
|
1454 |
+
value {
|
1455 |
+
list {
|
1456 |
+
i: 1
|
1457 |
+
i: 1
|
1458 |
+
i: 1
|
1459 |
+
i: 1
|
1460 |
+
}
|
1461 |
+
}
|
1462 |
+
}
|
1463 |
+
}
|
1464 |
+
node {
|
1465 |
+
name: "conv8_2_mbox_loc/BiasAdd"
|
1466 |
+
op: "BiasAdd"
|
1467 |
+
input: "conv8_2_mbox_loc/Conv2D"
|
1468 |
+
input: "conv8_2_mbox_loc/bias"
|
1469 |
+
}
|
1470 |
+
node {
|
1471 |
+
name: "flatten_4/Reshape"
|
1472 |
+
op: "Flatten"
|
1473 |
+
input: "conv8_2_mbox_loc/BiasAdd"
|
1474 |
+
}
|
1475 |
+
node {
|
1476 |
+
name: "conv8_2_mbox_conf/Conv2D"
|
1477 |
+
op: "Conv2D"
|
1478 |
+
input: "conv8_2_h/Relu"
|
1479 |
+
input: "conv8_2_mbox_conf/weights"
|
1480 |
+
attr {
|
1481 |
+
key: "dilations"
|
1482 |
+
value {
|
1483 |
+
list {
|
1484 |
+
i: 1
|
1485 |
+
i: 1
|
1486 |
+
i: 1
|
1487 |
+
i: 1
|
1488 |
+
}
|
1489 |
+
}
|
1490 |
+
}
|
1491 |
+
attr {
|
1492 |
+
key: "padding"
|
1493 |
+
value {
|
1494 |
+
s: "SAME"
|
1495 |
+
}
|
1496 |
+
}
|
1497 |
+
attr {
|
1498 |
+
key: "strides"
|
1499 |
+
value {
|
1500 |
+
list {
|
1501 |
+
i: 1
|
1502 |
+
i: 1
|
1503 |
+
i: 1
|
1504 |
+
i: 1
|
1505 |
+
}
|
1506 |
+
}
|
1507 |
+
}
|
1508 |
+
}
|
1509 |
+
node {
|
1510 |
+
name: "conv8_2_mbox_conf/BiasAdd"
|
1511 |
+
op: "BiasAdd"
|
1512 |
+
input: "conv8_2_mbox_conf/Conv2D"
|
1513 |
+
input: "conv8_2_mbox_conf/bias"
|
1514 |
+
}
|
1515 |
+
node {
|
1516 |
+
name: "flatten_10/Reshape"
|
1517 |
+
op: "Flatten"
|
1518 |
+
input: "conv8_2_mbox_conf/BiasAdd"
|
1519 |
+
}
|
1520 |
+
node {
|
1521 |
+
name: "conv7_2_mbox_loc/Conv2D"
|
1522 |
+
op: "Conv2D"
|
1523 |
+
input: "conv7_2_h/Relu"
|
1524 |
+
input: "conv7_2_mbox_loc/weights"
|
1525 |
+
attr {
|
1526 |
+
key: "dilations"
|
1527 |
+
value {
|
1528 |
+
list {
|
1529 |
+
i: 1
|
1530 |
+
i: 1
|
1531 |
+
i: 1
|
1532 |
+
i: 1
|
1533 |
+
}
|
1534 |
+
}
|
1535 |
+
}
|
1536 |
+
attr {
|
1537 |
+
key: "padding"
|
1538 |
+
value {
|
1539 |
+
s: "SAME"
|
1540 |
+
}
|
1541 |
+
}
|
1542 |
+
attr {
|
1543 |
+
key: "strides"
|
1544 |
+
value {
|
1545 |
+
list {
|
1546 |
+
i: 1
|
1547 |
+
i: 1
|
1548 |
+
i: 1
|
1549 |
+
i: 1
|
1550 |
+
}
|
1551 |
+
}
|
1552 |
+
}
|
1553 |
+
}
|
1554 |
+
node {
|
1555 |
+
name: "conv7_2_mbox_loc/BiasAdd"
|
1556 |
+
op: "BiasAdd"
|
1557 |
+
input: "conv7_2_mbox_loc/Conv2D"
|
1558 |
+
input: "conv7_2_mbox_loc/bias"
|
1559 |
+
}
|
1560 |
+
node {
|
1561 |
+
name: "flatten_3/Reshape"
|
1562 |
+
op: "Flatten"
|
1563 |
+
input: "conv7_2_mbox_loc/BiasAdd"
|
1564 |
+
}
|
1565 |
+
node {
|
1566 |
+
name: "conv7_2_mbox_conf/Conv2D"
|
1567 |
+
op: "Conv2D"
|
1568 |
+
input: "conv7_2_h/Relu"
|
1569 |
+
input: "conv7_2_mbox_conf/weights"
|
1570 |
+
attr {
|
1571 |
+
key: "dilations"
|
1572 |
+
value {
|
1573 |
+
list {
|
1574 |
+
i: 1
|
1575 |
+
i: 1
|
1576 |
+
i: 1
|
1577 |
+
i: 1
|
1578 |
+
}
|
1579 |
+
}
|
1580 |
+
}
|
1581 |
+
attr {
|
1582 |
+
key: "padding"
|
1583 |
+
value {
|
1584 |
+
s: "SAME"
|
1585 |
+
}
|
1586 |
+
}
|
1587 |
+
attr {
|
1588 |
+
key: "strides"
|
1589 |
+
value {
|
1590 |
+
list {
|
1591 |
+
i: 1
|
1592 |
+
i: 1
|
1593 |
+
i: 1
|
1594 |
+
i: 1
|
1595 |
+
}
|
1596 |
+
}
|
1597 |
+
}
|
1598 |
+
}
|
1599 |
+
node {
|
1600 |
+
name: "conv7_2_mbox_conf/BiasAdd"
|
1601 |
+
op: "BiasAdd"
|
1602 |
+
input: "conv7_2_mbox_conf/Conv2D"
|
1603 |
+
input: "conv7_2_mbox_conf/bias"
|
1604 |
+
}
|
1605 |
+
node {
|
1606 |
+
name: "flatten_9/Reshape"
|
1607 |
+
op: "Flatten"
|
1608 |
+
input: "conv7_2_mbox_conf/BiasAdd"
|
1609 |
+
}
|
1610 |
+
node {
|
1611 |
+
name: "conv6_2_mbox_loc/Conv2D"
|
1612 |
+
op: "Conv2D"
|
1613 |
+
input: "conv6_2_h/Relu"
|
1614 |
+
input: "conv6_2_mbox_loc/weights"
|
1615 |
+
attr {
|
1616 |
+
key: "dilations"
|
1617 |
+
value {
|
1618 |
+
list {
|
1619 |
+
i: 1
|
1620 |
+
i: 1
|
1621 |
+
i: 1
|
1622 |
+
i: 1
|
1623 |
+
}
|
1624 |
+
}
|
1625 |
+
}
|
1626 |
+
attr {
|
1627 |
+
key: "padding"
|
1628 |
+
value {
|
1629 |
+
s: "SAME"
|
1630 |
+
}
|
1631 |
+
}
|
1632 |
+
attr {
|
1633 |
+
key: "strides"
|
1634 |
+
value {
|
1635 |
+
list {
|
1636 |
+
i: 1
|
1637 |
+
i: 1
|
1638 |
+
i: 1
|
1639 |
+
i: 1
|
1640 |
+
}
|
1641 |
+
}
|
1642 |
+
}
|
1643 |
+
}
|
1644 |
+
node {
|
1645 |
+
name: "conv6_2_mbox_loc/BiasAdd"
|
1646 |
+
op: "BiasAdd"
|
1647 |
+
input: "conv6_2_mbox_loc/Conv2D"
|
1648 |
+
input: "conv6_2_mbox_loc/bias"
|
1649 |
+
}
|
1650 |
+
node {
|
1651 |
+
name: "flatten_2/Reshape"
|
1652 |
+
op: "Flatten"
|
1653 |
+
input: "conv6_2_mbox_loc/BiasAdd"
|
1654 |
+
}
|
1655 |
+
node {
|
1656 |
+
name: "conv6_2_mbox_conf/Conv2D"
|
1657 |
+
op: "Conv2D"
|
1658 |
+
input: "conv6_2_h/Relu"
|
1659 |
+
input: "conv6_2_mbox_conf/weights"
|
1660 |
+
attr {
|
1661 |
+
key: "dilations"
|
1662 |
+
value {
|
1663 |
+
list {
|
1664 |
+
i: 1
|
1665 |
+
i: 1
|
1666 |
+
i: 1
|
1667 |
+
i: 1
|
1668 |
+
}
|
1669 |
+
}
|
1670 |
+
}
|
1671 |
+
attr {
|
1672 |
+
key: "padding"
|
1673 |
+
value {
|
1674 |
+
s: "SAME"
|
1675 |
+
}
|
1676 |
+
}
|
1677 |
+
attr {
|
1678 |
+
key: "strides"
|
1679 |
+
value {
|
1680 |
+
list {
|
1681 |
+
i: 1
|
1682 |
+
i: 1
|
1683 |
+
i: 1
|
1684 |
+
i: 1
|
1685 |
+
}
|
1686 |
+
}
|
1687 |
+
}
|
1688 |
+
}
|
1689 |
+
node {
|
1690 |
+
name: "conv6_2_mbox_conf/BiasAdd"
|
1691 |
+
op: "BiasAdd"
|
1692 |
+
input: "conv6_2_mbox_conf/Conv2D"
|
1693 |
+
input: "conv6_2_mbox_conf/bias"
|
1694 |
+
}
|
1695 |
+
node {
|
1696 |
+
name: "flatten_8/Reshape"
|
1697 |
+
op: "Flatten"
|
1698 |
+
input: "conv6_2_mbox_conf/BiasAdd"
|
1699 |
+
}
|
1700 |
+
node {
|
1701 |
+
name: "fc7_mbox_loc/Conv2D"
|
1702 |
+
op: "Conv2D"
|
1703 |
+
input: "last_relu"
|
1704 |
+
input: "fc7_mbox_loc/weights"
|
1705 |
+
attr {
|
1706 |
+
key: "dilations"
|
1707 |
+
value {
|
1708 |
+
list {
|
1709 |
+
i: 1
|
1710 |
+
i: 1
|
1711 |
+
i: 1
|
1712 |
+
i: 1
|
1713 |
+
}
|
1714 |
+
}
|
1715 |
+
}
|
1716 |
+
attr {
|
1717 |
+
key: "padding"
|
1718 |
+
value {
|
1719 |
+
s: "SAME"
|
1720 |
+
}
|
1721 |
+
}
|
1722 |
+
attr {
|
1723 |
+
key: "strides"
|
1724 |
+
value {
|
1725 |
+
list {
|
1726 |
+
i: 1
|
1727 |
+
i: 1
|
1728 |
+
i: 1
|
1729 |
+
i: 1
|
1730 |
+
}
|
1731 |
+
}
|
1732 |
+
}
|
1733 |
+
}
|
1734 |
+
node {
|
1735 |
+
name: "fc7_mbox_loc/BiasAdd"
|
1736 |
+
op: "BiasAdd"
|
1737 |
+
input: "fc7_mbox_loc/Conv2D"
|
1738 |
+
input: "fc7_mbox_loc/bias"
|
1739 |
+
}
|
1740 |
+
node {
|
1741 |
+
name: "flatten_1/Reshape"
|
1742 |
+
op: "Flatten"
|
1743 |
+
input: "fc7_mbox_loc/BiasAdd"
|
1744 |
+
}
|
1745 |
+
node {
|
1746 |
+
name: "mbox_loc"
|
1747 |
+
op: "ConcatV2"
|
1748 |
+
input: "flatten/Reshape"
|
1749 |
+
input: "flatten_1/Reshape"
|
1750 |
+
input: "flatten_2/Reshape"
|
1751 |
+
input: "flatten_3/Reshape"
|
1752 |
+
input: "flatten_4/Reshape"
|
1753 |
+
input: "flatten_5/Reshape"
|
1754 |
+
input: "mbox_loc/axis"
|
1755 |
+
}
|
1756 |
+
node {
|
1757 |
+
name: "fc7_mbox_conf/Conv2D"
|
1758 |
+
op: "Conv2D"
|
1759 |
+
input: "last_relu"
|
1760 |
+
input: "fc7_mbox_conf/weights"
|
1761 |
+
attr {
|
1762 |
+
key: "dilations"
|
1763 |
+
value {
|
1764 |
+
list {
|
1765 |
+
i: 1
|
1766 |
+
i: 1
|
1767 |
+
i: 1
|
1768 |
+
i: 1
|
1769 |
+
}
|
1770 |
+
}
|
1771 |
+
}
|
1772 |
+
attr {
|
1773 |
+
key: "padding"
|
1774 |
+
value {
|
1775 |
+
s: "SAME"
|
1776 |
+
}
|
1777 |
+
}
|
1778 |
+
attr {
|
1779 |
+
key: "strides"
|
1780 |
+
value {
|
1781 |
+
list {
|
1782 |
+
i: 1
|
1783 |
+
i: 1
|
1784 |
+
i: 1
|
1785 |
+
i: 1
|
1786 |
+
}
|
1787 |
+
}
|
1788 |
+
}
|
1789 |
+
}
|
1790 |
+
node {
|
1791 |
+
name: "fc7_mbox_conf/BiasAdd"
|
1792 |
+
op: "BiasAdd"
|
1793 |
+
input: "fc7_mbox_conf/Conv2D"
|
1794 |
+
input: "fc7_mbox_conf/bias"
|
1795 |
+
}
|
1796 |
+
node {
|
1797 |
+
name: "flatten_7/Reshape"
|
1798 |
+
op: "Flatten"
|
1799 |
+
input: "fc7_mbox_conf/BiasAdd"
|
1800 |
+
}
|
1801 |
+
node {
|
1802 |
+
name: "mbox_conf"
|
1803 |
+
op: "ConcatV2"
|
1804 |
+
input: "flatten_6/Reshape"
|
1805 |
+
input: "flatten_7/Reshape"
|
1806 |
+
input: "flatten_8/Reshape"
|
1807 |
+
input: "flatten_9/Reshape"
|
1808 |
+
input: "flatten_10/Reshape"
|
1809 |
+
input: "flatten_11/Reshape"
|
1810 |
+
input: "mbox_conf/axis"
|
1811 |
+
}
|
1812 |
+
node {
|
1813 |
+
name: "mbox_conf_reshape"
|
1814 |
+
op: "Reshape"
|
1815 |
+
input: "mbox_conf"
|
1816 |
+
input: "reshape_before_softmax"
|
1817 |
+
}
|
1818 |
+
node {
|
1819 |
+
name: "mbox_conf_softmax"
|
1820 |
+
op: "Softmax"
|
1821 |
+
input: "mbox_conf_reshape"
|
1822 |
+
attr {
|
1823 |
+
key: "axis"
|
1824 |
+
value {
|
1825 |
+
i: 2
|
1826 |
+
}
|
1827 |
+
}
|
1828 |
+
}
|
1829 |
+
node {
|
1830 |
+
name: "mbox_conf_flatten"
|
1831 |
+
op: "Flatten"
|
1832 |
+
input: "mbox_conf_softmax"
|
1833 |
+
}
|
1834 |
+
node {
|
1835 |
+
name: "PriorBox_0"
|
1836 |
+
op: "PriorBox"
|
1837 |
+
input: "conv4_3_norm/mul_1"
|
1838 |
+
input: "data"
|
1839 |
+
attr {
|
1840 |
+
key: "aspect_ratio"
|
1841 |
+
value {
|
1842 |
+
tensor {
|
1843 |
+
dtype: DT_FLOAT
|
1844 |
+
tensor_shape {
|
1845 |
+
dim {
|
1846 |
+
size: 1
|
1847 |
+
}
|
1848 |
+
}
|
1849 |
+
float_val: 2.0
|
1850 |
+
}
|
1851 |
+
}
|
1852 |
+
}
|
1853 |
+
attr {
|
1854 |
+
key: "clip"
|
1855 |
+
value {
|
1856 |
+
b: false
|
1857 |
+
}
|
1858 |
+
}
|
1859 |
+
attr {
|
1860 |
+
key: "flip"
|
1861 |
+
value {
|
1862 |
+
b: true
|
1863 |
+
}
|
1864 |
+
}
|
1865 |
+
attr {
|
1866 |
+
key: "max_size"
|
1867 |
+
value {
|
1868 |
+
i: 60
|
1869 |
+
}
|
1870 |
+
}
|
1871 |
+
attr {
|
1872 |
+
key: "min_size"
|
1873 |
+
value {
|
1874 |
+
i: 30
|
1875 |
+
}
|
1876 |
+
}
|
1877 |
+
attr {
|
1878 |
+
key: "offset"
|
1879 |
+
value {
|
1880 |
+
f: 0.5
|
1881 |
+
}
|
1882 |
+
}
|
1883 |
+
attr {
|
1884 |
+
key: "step"
|
1885 |
+
value {
|
1886 |
+
f: 8.0
|
1887 |
+
}
|
1888 |
+
}
|
1889 |
+
attr {
|
1890 |
+
key: "variance"
|
1891 |
+
value {
|
1892 |
+
tensor {
|
1893 |
+
dtype: DT_FLOAT
|
1894 |
+
tensor_shape {
|
1895 |
+
dim {
|
1896 |
+
size: 4
|
1897 |
+
}
|
1898 |
+
}
|
1899 |
+
float_val: 0.10000000149
|
1900 |
+
float_val: 0.10000000149
|
1901 |
+
float_val: 0.20000000298
|
1902 |
+
float_val: 0.20000000298
|
1903 |
+
}
|
1904 |
+
}
|
1905 |
+
}
|
1906 |
+
}
|
1907 |
+
node {
|
1908 |
+
name: "PriorBox_1"
|
1909 |
+
op: "PriorBox"
|
1910 |
+
input: "last_relu"
|
1911 |
+
input: "data"
|
1912 |
+
attr {
|
1913 |
+
key: "aspect_ratio"
|
1914 |
+
value {
|
1915 |
+
tensor {
|
1916 |
+
dtype: DT_FLOAT
|
1917 |
+
tensor_shape {
|
1918 |
+
dim {
|
1919 |
+
size: 2
|
1920 |
+
}
|
1921 |
+
}
|
1922 |
+
float_val: 2.0
|
1923 |
+
float_val: 3.0
|
1924 |
+
}
|
1925 |
+
}
|
1926 |
+
}
|
1927 |
+
attr {
|
1928 |
+
key: "clip"
|
1929 |
+
value {
|
1930 |
+
b: false
|
1931 |
+
}
|
1932 |
+
}
|
1933 |
+
attr {
|
1934 |
+
key: "flip"
|
1935 |
+
value {
|
1936 |
+
b: true
|
1937 |
+
}
|
1938 |
+
}
|
1939 |
+
attr {
|
1940 |
+
key: "max_size"
|
1941 |
+
value {
|
1942 |
+
i: 111
|
1943 |
+
}
|
1944 |
+
}
|
1945 |
+
attr {
|
1946 |
+
key: "min_size"
|
1947 |
+
value {
|
1948 |
+
i: 60
|
1949 |
+
}
|
1950 |
+
}
|
1951 |
+
attr {
|
1952 |
+
key: "offset"
|
1953 |
+
value {
|
1954 |
+
f: 0.5
|
1955 |
+
}
|
1956 |
+
}
|
1957 |
+
attr {
|
1958 |
+
key: "step"
|
1959 |
+
value {
|
1960 |
+
f: 16.0
|
1961 |
+
}
|
1962 |
+
}
|
1963 |
+
attr {
|
1964 |
+
key: "variance"
|
1965 |
+
value {
|
1966 |
+
tensor {
|
1967 |
+
dtype: DT_FLOAT
|
1968 |
+
tensor_shape {
|
1969 |
+
dim {
|
1970 |
+
size: 4
|
1971 |
+
}
|
1972 |
+
}
|
1973 |
+
float_val: 0.10000000149
|
1974 |
+
float_val: 0.10000000149
|
1975 |
+
float_val: 0.20000000298
|
1976 |
+
float_val: 0.20000000298
|
1977 |
+
}
|
1978 |
+
}
|
1979 |
+
}
|
1980 |
+
}
|
1981 |
+
node {
|
1982 |
+
name: "PriorBox_2"
|
1983 |
+
op: "PriorBox"
|
1984 |
+
input: "conv6_2_h/Relu"
|
1985 |
+
input: "data"
|
1986 |
+
attr {
|
1987 |
+
key: "aspect_ratio"
|
1988 |
+
value {
|
1989 |
+
tensor {
|
1990 |
+
dtype: DT_FLOAT
|
1991 |
+
tensor_shape {
|
1992 |
+
dim {
|
1993 |
+
size: 2
|
1994 |
+
}
|
1995 |
+
}
|
1996 |
+
float_val: 2.0
|
1997 |
+
float_val: 3.0
|
1998 |
+
}
|
1999 |
+
}
|
2000 |
+
}
|
2001 |
+
attr {
|
2002 |
+
key: "clip"
|
2003 |
+
value {
|
2004 |
+
b: false
|
2005 |
+
}
|
2006 |
+
}
|
2007 |
+
attr {
|
2008 |
+
key: "flip"
|
2009 |
+
value {
|
2010 |
+
b: true
|
2011 |
+
}
|
2012 |
+
}
|
2013 |
+
attr {
|
2014 |
+
key: "max_size"
|
2015 |
+
value {
|
2016 |
+
i: 162
|
2017 |
+
}
|
2018 |
+
}
|
2019 |
+
attr {
|
2020 |
+
key: "min_size"
|
2021 |
+
value {
|
2022 |
+
i: 111
|
2023 |
+
}
|
2024 |
+
}
|
2025 |
+
attr {
|
2026 |
+
key: "offset"
|
2027 |
+
value {
|
2028 |
+
f: 0.5
|
2029 |
+
}
|
2030 |
+
}
|
2031 |
+
attr {
|
2032 |
+
key: "step"
|
2033 |
+
value {
|
2034 |
+
f: 32.0
|
2035 |
+
}
|
2036 |
+
}
|
2037 |
+
attr {
|
2038 |
+
key: "variance"
|
2039 |
+
value {
|
2040 |
+
tensor {
|
2041 |
+
dtype: DT_FLOAT
|
2042 |
+
tensor_shape {
|
2043 |
+
dim {
|
2044 |
+
size: 4
|
2045 |
+
}
|
2046 |
+
}
|
2047 |
+
float_val: 0.10000000149
|
2048 |
+
float_val: 0.10000000149
|
2049 |
+
float_val: 0.20000000298
|
2050 |
+
float_val: 0.20000000298
|
2051 |
+
}
|
2052 |
+
}
|
2053 |
+
}
|
2054 |
+
}
|
2055 |
+
node {
|
2056 |
+
name: "PriorBox_3"
|
2057 |
+
op: "PriorBox"
|
2058 |
+
input: "conv7_2_h/Relu"
|
2059 |
+
input: "data"
|
2060 |
+
attr {
|
2061 |
+
key: "aspect_ratio"
|
2062 |
+
value {
|
2063 |
+
tensor {
|
2064 |
+
dtype: DT_FLOAT
|
2065 |
+
tensor_shape {
|
2066 |
+
dim {
|
2067 |
+
size: 2
|
2068 |
+
}
|
2069 |
+
}
|
2070 |
+
float_val: 2.0
|
2071 |
+
float_val: 3.0
|
2072 |
+
}
|
2073 |
+
}
|
2074 |
+
}
|
2075 |
+
attr {
|
2076 |
+
key: "clip"
|
2077 |
+
value {
|
2078 |
+
b: false
|
2079 |
+
}
|
2080 |
+
}
|
2081 |
+
attr {
|
2082 |
+
key: "flip"
|
2083 |
+
value {
|
2084 |
+
b: true
|
2085 |
+
}
|
2086 |
+
}
|
2087 |
+
attr {
|
2088 |
+
key: "max_size"
|
2089 |
+
value {
|
2090 |
+
i: 213
|
2091 |
+
}
|
2092 |
+
}
|
2093 |
+
attr {
|
2094 |
+
key: "min_size"
|
2095 |
+
value {
|
2096 |
+
i: 162
|
2097 |
+
}
|
2098 |
+
}
|
2099 |
+
attr {
|
2100 |
+
key: "offset"
|
2101 |
+
value {
|
2102 |
+
f: 0.5
|
2103 |
+
}
|
2104 |
+
}
|
2105 |
+
attr {
|
2106 |
+
key: "step"
|
2107 |
+
value {
|
2108 |
+
f: 64.0
|
2109 |
+
}
|
2110 |
+
}
|
2111 |
+
attr {
|
2112 |
+
key: "variance"
|
2113 |
+
value {
|
2114 |
+
tensor {
|
2115 |
+
dtype: DT_FLOAT
|
2116 |
+
tensor_shape {
|
2117 |
+
dim {
|
2118 |
+
size: 4
|
2119 |
+
}
|
2120 |
+
}
|
2121 |
+
float_val: 0.10000000149
|
2122 |
+
float_val: 0.10000000149
|
2123 |
+
float_val: 0.20000000298
|
2124 |
+
float_val: 0.20000000298
|
2125 |
+
}
|
2126 |
+
}
|
2127 |
+
}
|
2128 |
+
}
|
2129 |
+
node {
|
2130 |
+
name: "PriorBox_4"
|
2131 |
+
op: "PriorBox"
|
2132 |
+
input: "conv8_2_h/Relu"
|
2133 |
+
input: "data"
|
2134 |
+
attr {
|
2135 |
+
key: "aspect_ratio"
|
2136 |
+
value {
|
2137 |
+
tensor {
|
2138 |
+
dtype: DT_FLOAT
|
2139 |
+
tensor_shape {
|
2140 |
+
dim {
|
2141 |
+
size: 1
|
2142 |
+
}
|
2143 |
+
}
|
2144 |
+
float_val: 2.0
|
2145 |
+
}
|
2146 |
+
}
|
2147 |
+
}
|
2148 |
+
attr {
|
2149 |
+
key: "clip"
|
2150 |
+
value {
|
2151 |
+
b: false
|
2152 |
+
}
|
2153 |
+
}
|
2154 |
+
attr {
|
2155 |
+
key: "flip"
|
2156 |
+
value {
|
2157 |
+
b: true
|
2158 |
+
}
|
2159 |
+
}
|
2160 |
+
attr {
|
2161 |
+
key: "max_size"
|
2162 |
+
value {
|
2163 |
+
i: 264
|
2164 |
+
}
|
2165 |
+
}
|
2166 |
+
attr {
|
2167 |
+
key: "min_size"
|
2168 |
+
value {
|
2169 |
+
i: 213
|
2170 |
+
}
|
2171 |
+
}
|
2172 |
+
attr {
|
2173 |
+
key: "offset"
|
2174 |
+
value {
|
2175 |
+
f: 0.5
|
2176 |
+
}
|
2177 |
+
}
|
2178 |
+
attr {
|
2179 |
+
key: "step"
|
2180 |
+
value {
|
2181 |
+
f: 100.0
|
2182 |
+
}
|
2183 |
+
}
|
2184 |
+
attr {
|
2185 |
+
key: "variance"
|
2186 |
+
value {
|
2187 |
+
tensor {
|
2188 |
+
dtype: DT_FLOAT
|
2189 |
+
tensor_shape {
|
2190 |
+
dim {
|
2191 |
+
size: 4
|
2192 |
+
}
|
2193 |
+
}
|
2194 |
+
float_val: 0.10000000149
|
2195 |
+
float_val: 0.10000000149
|
2196 |
+
float_val: 0.20000000298
|
2197 |
+
float_val: 0.20000000298
|
2198 |
+
}
|
2199 |
+
}
|
2200 |
+
}
|
2201 |
+
}
|
2202 |
+
node {
|
2203 |
+
name: "PriorBox_5"
|
2204 |
+
op: "PriorBox"
|
2205 |
+
input: "conv9_2_h/Relu"
|
2206 |
+
input: "data"
|
2207 |
+
attr {
|
2208 |
+
key: "aspect_ratio"
|
2209 |
+
value {
|
2210 |
+
tensor {
|
2211 |
+
dtype: DT_FLOAT
|
2212 |
+
tensor_shape {
|
2213 |
+
dim {
|
2214 |
+
size: 1
|
2215 |
+
}
|
2216 |
+
}
|
2217 |
+
float_val: 2.0
|
2218 |
+
}
|
2219 |
+
}
|
2220 |
+
}
|
2221 |
+
attr {
|
2222 |
+
key: "clip"
|
2223 |
+
value {
|
2224 |
+
b: false
|
2225 |
+
}
|
2226 |
+
}
|
2227 |
+
attr {
|
2228 |
+
key: "flip"
|
2229 |
+
value {
|
2230 |
+
b: true
|
2231 |
+
}
|
2232 |
+
}
|
2233 |
+
attr {
|
2234 |
+
key: "max_size"
|
2235 |
+
value {
|
2236 |
+
i: 315
|
2237 |
+
}
|
2238 |
+
}
|
2239 |
+
attr {
|
2240 |
+
key: "min_size"
|
2241 |
+
value {
|
2242 |
+
i: 264
|
2243 |
+
}
|
2244 |
+
}
|
2245 |
+
attr {
|
2246 |
+
key: "offset"
|
2247 |
+
value {
|
2248 |
+
f: 0.5
|
2249 |
+
}
|
2250 |
+
}
|
2251 |
+
attr {
|
2252 |
+
key: "step"
|
2253 |
+
value {
|
2254 |
+
f: 300.0
|
2255 |
+
}
|
2256 |
+
}
|
2257 |
+
attr {
|
2258 |
+
key: "variance"
|
2259 |
+
value {
|
2260 |
+
tensor {
|
2261 |
+
dtype: DT_FLOAT
|
2262 |
+
tensor_shape {
|
2263 |
+
dim {
|
2264 |
+
size: 4
|
2265 |
+
}
|
2266 |
+
}
|
2267 |
+
float_val: 0.10000000149
|
2268 |
+
float_val: 0.10000000149
|
2269 |
+
float_val: 0.20000000298
|
2270 |
+
float_val: 0.20000000298
|
2271 |
+
}
|
2272 |
+
}
|
2273 |
+
}
|
2274 |
+
}
|
2275 |
+
node {
|
2276 |
+
name: "mbox_priorbox"
|
2277 |
+
op: "ConcatV2"
|
2278 |
+
input: "PriorBox_0"
|
2279 |
+
input: "PriorBox_1"
|
2280 |
+
input: "PriorBox_2"
|
2281 |
+
input: "PriorBox_3"
|
2282 |
+
input: "PriorBox_4"
|
2283 |
+
input: "PriorBox_5"
|
2284 |
+
input: "mbox_loc/axis"
|
2285 |
+
}
|
2286 |
+
node {
|
2287 |
+
name: "detection_out"
|
2288 |
+
op: "DetectionOutput"
|
2289 |
+
input: "mbox_loc"
|
2290 |
+
input: "mbox_conf_flatten"
|
2291 |
+
input: "mbox_priorbox"
|
2292 |
+
attr {
|
2293 |
+
key: "background_label_id"
|
2294 |
+
value {
|
2295 |
+
i: 0
|
2296 |
+
}
|
2297 |
+
}
|
2298 |
+
attr {
|
2299 |
+
key: "code_type"
|
2300 |
+
value {
|
2301 |
+
s: "CENTER_SIZE"
|
2302 |
+
}
|
2303 |
+
}
|
2304 |
+
attr {
|
2305 |
+
key: "confidence_threshold"
|
2306 |
+
value {
|
2307 |
+
f: 0.00999999977648
|
2308 |
+
}
|
2309 |
+
}
|
2310 |
+
attr {
|
2311 |
+
key: "keep_top_k"
|
2312 |
+
value {
|
2313 |
+
i: 200
|
2314 |
+
}
|
2315 |
+
}
|
2316 |
+
attr {
|
2317 |
+
key: "nms_threshold"
|
2318 |
+
value {
|
2319 |
+
f: 0.449999988079
|
2320 |
+
}
|
2321 |
+
}
|
2322 |
+
attr {
|
2323 |
+
key: "num_classes"
|
2324 |
+
value {
|
2325 |
+
i: 2
|
2326 |
+
}
|
2327 |
+
}
|
2328 |
+
attr {
|
2329 |
+
key: "share_location"
|
2330 |
+
value {
|
2331 |
+
b: true
|
2332 |
+
}
|
2333 |
+
}
|
2334 |
+
attr {
|
2335 |
+
key: "top_k"
|
2336 |
+
value {
|
2337 |
+
i: 400
|
2338 |
+
}
|
2339 |
+
}
|
2340 |
+
}
|
2341 |
+
node {
|
2342 |
+
name: "reshape_before_softmax"
|
2343 |
+
op: "Const"
|
2344 |
+
attr {
|
2345 |
+
key: "value"
|
2346 |
+
value {
|
2347 |
+
tensor {
|
2348 |
+
dtype: DT_INT32
|
2349 |
+
tensor_shape {
|
2350 |
+
dim {
|
2351 |
+
size: 3
|
2352 |
+
}
|
2353 |
+
}
|
2354 |
+
int_val: 0
|
2355 |
+
int_val: -1
|
2356 |
+
int_val: 2
|
2357 |
+
}
|
2358 |
+
}
|
2359 |
+
}
|
2360 |
+
}
|
2361 |
+
library {
|
2362 |
+
}
|
opencv_face_detector_uint8.pb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c71d752ef2cbf2f457ac82fdd580fcb2522fd04c5efdaed18eb6d9e2843fbed
|
3 |
+
size 2727750
|