Akila commited on
Commit
f3c82df
1 Parent(s): b5a31c9

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +155 -0
README.md ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: peft
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ base_model: mistralai/Mistral-7B-Instruct-v0.2
8
+ model-index:
9
+ - name: Mistral-of-Realms-7b-Instruct
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.0`
20
+ ```yaml
21
+ base_model: mistralai/Mistral-7B-Instruct-v0.2
22
+ model_type: MistralForCausalLM
23
+ tokenizer_type: LlamaTokenizer
24
+
25
+ load_in_8bit: false
26
+ load_in_4bit: true
27
+ strict: false
28
+
29
+ datasets:
30
+ - path: Akila/ForgottenRealmsWikiDataset
31
+ data_files:
32
+ - specific_formats/FRW-J-alpaca.jsonl
33
+ type: alpaca
34
+ dataset_prepared_path:
35
+ val_set_size: 0.1
36
+ output_dir: ./qlora-out
37
+ hub_model_id: Akila/Mistral-of-Realms-7b-Instruct
38
+
39
+ adapter: qlora
40
+ lora_model_dir:
41
+
42
+ sequence_len: 8192
43
+ sample_packing: true
44
+ pad_to_sequence_len: true
45
+
46
+ lora_r: 32
47
+ lora_alpha: 16
48
+ lora_dropout: 0.05
49
+ lora_target_linear: true
50
+ lora_fan_in_fan_out:
51
+ lora_target_modules:
52
+ - gate_proj
53
+ - down_proj
54
+ - up_proj
55
+ - q_proj
56
+ - v_proj
57
+ - k_proj
58
+ - o_proj
59
+
60
+ wandb_project:
61
+ wandb_entity:
62
+ wandb_watch:
63
+ wandb_name:
64
+ wandb_log_model:
65
+
66
+ gradient_accumulation_steps: 4
67
+ micro_batch_size: 2
68
+ num_epochs: 1
69
+ optimizer: adamw_bnb_8bit
70
+ lr_scheduler: cosine
71
+ learning_rate: 0.0002
72
+
73
+ train_on_inputs: false
74
+ group_by_length: false
75
+ bf16: auto
76
+ fp16:
77
+ tf32: false
78
+
79
+ gradient_checkpointing: true
80
+ early_stopping_patience:
81
+ resume_from_checkpoint:
82
+ local_rank:
83
+ logging_steps: 1
84
+ xformers_attention:
85
+ flash_attention: true
86
+
87
+ loss_watchdog_threshold: 5.0
88
+ loss_watchdog_patience: 3
89
+
90
+ warmup_steps: 10
91
+ evals_per_epoch: 4
92
+ eval_table_size:
93
+ eval_max_new_tokens: 128
94
+ saves_per_epoch: 1
95
+ debug:
96
+ deepspeed:
97
+ weight_decay: 0.0
98
+ fsdp:
99
+ fsdp_config:
100
+ special_tokens:
101
+ ```
102
+
103
+ </details><br>
104
+
105
+ # Mistral-of-Realms-7b-Instruct
106
+
107
+ This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the None dataset.
108
+ It achieves the following results on the evaluation set:
109
+ - Loss: 2.0238
110
+
111
+ ## Model description
112
+
113
+ More information needed
114
+
115
+ ## Intended uses & limitations
116
+
117
+ More information needed
118
+
119
+ ## Training and evaluation data
120
+
121
+ More information needed
122
+
123
+ ## Training procedure
124
+
125
+ ### Training hyperparameters
126
+
127
+ The following hyperparameters were used during training:
128
+ - learning_rate: 0.0002
129
+ - train_batch_size: 2
130
+ - eval_batch_size: 2
131
+ - seed: 42
132
+ - gradient_accumulation_steps: 4
133
+ - total_train_batch_size: 8
134
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
135
+ - lr_scheduler_type: cosine
136
+ - lr_scheduler_warmup_steps: 10
137
+ - num_epochs: 1
138
+
139
+ ### Training results
140
+
141
+ | Training Loss | Epoch | Step | Validation Loss |
142
+ |:-------------:|:-----:|:----:|:---------------:|
143
+ | 2.7354 | 0.0 | 1 | 2.6820 |
144
+ | 2.0912 | 0.25 | 54 | 2.1009 |
145
+ | 2.0407 | 0.51 | 108 | 2.0480 |
146
+ | 1.9771 | 0.76 | 162 | 2.0238 |
147
+
148
+
149
+ ### Framework versions
150
+
151
+ - PEFT 0.10.0
152
+ - Transformers 4.40.0.dev0
153
+ - Pytorch 2.2.0+cu121
154
+ - Datasets 2.15.0
155
+ - Tokenizers 0.15.0