--- license: apache-2.0 library_name: peft tags: - axolotl - generated_from_trainer base_model: mistralai/Mistral-7B-Instruct-v0.2 model-index: - name: Mistral-of-Realms-7b-Instruct results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: mistralai/Mistral-7B-Instruct-v0.2 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: false load_in_4bit: true strict: false datasets: - path: Akila/ForgottenRealmsWikiDataset data_files: - specific_formats/FRW-J-alpaca.jsonl type: alpaca dataset_prepared_path: val_set_size: 0.1 output_dir: ./qlora-out hub_model_id: Akila/Mistral-of-Realms-7b-Instruct adapter: qlora lora_model_dir: sequence_len: 8192 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# Mistral-of-Realms-7b-Instruct This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0238 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7354 | 0.0 | 1 | 2.6820 | | 2.0912 | 0.25 | 54 | 2.1009 | | 2.0407 | 0.51 | 108 | 2.0480 | | 1.9771 | 0.76 | 162 | 2.0238 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0.dev0 - Pytorch 2.2.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0