File size: 3,633 Bytes
3077368 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
license: apache-2.0
base_model: google/mt5-large
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: MT5-large_NO-idun-20epoch-earlystopping
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MT5-large_NO-idun-20epoch-earlystopping
This model is a fine-tuned version of [google/mt5-large](https://huggingface.co/google/mt5-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6061
- Rouge1: 41.2146
- Rouge2: 18.153
- Rougel: 28.4036
- Rougelsum: 36.8514
- Gen Len: 111.1064
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:|
| No log | 0.98 | 46 | 13.1717 | 15.636 | 4.987 | 10.443 | 14.3841 | 119.9149 |
| No log | 1.99 | 93 | 7.7651 | 10.907 | 1.4566 | 6.9291 | 10.152 | 127.0 |
| No log | 2.99 | 140 | 6.4230 | 18.8954 | 0.4957 | 13.2179 | 17.1171 | 127.0 |
| No log | 4.0 | 187 | 2.1315 | 37.1306 | 13.4104 | 21.2261 | 33.0925 | 127.0 |
| No log | 4.98 | 233 | 1.7761 | 37.6703 | 14.7962 | 22.835 | 34.0213 | 113.5638 |
| No log | 5.99 | 280 | 1.6807 | 38.6245 | 15.7401 | 24.5743 | 34.5933 | 113.2340 |
| No log | 6.99 | 327 | 1.6484 | 38.7899 | 15.737 | 24.9265 | 34.6166 | 114.3404 |
| No log | 8.0 | 374 | 1.6156 | 39.3812 | 15.7133 | 24.979 | 35.2788 | 120.0319 |
| No log | 8.98 | 420 | 1.6138 | 40.0966 | 17.4991 | 26.5925 | 36.5511 | 117.2234 |
| No log | 9.99 | 467 | 1.6152 | 40.3623 | 17.7244 | 27.0847 | 36.2108 | 113.2128 |
| 6.3618 | 10.99 | 514 | 1.6102 | 41.2763 | 18.0108 | 27.6185 | 37.1836 | 113.1064 |
| 6.3618 | 12.0 | 561 | 1.6070 | 41.2369 | 17.8711 | 27.3781 | 36.9853 | 115.7766 |
| 6.3618 | 12.98 | 607 | 1.6087 | 42.0737 | 18.414 | 27.8849 | 38.1238 | 113.3404 |
| 6.3618 | 13.99 | 654 | 1.6038 | 41.4279 | 17.8899 | 27.79 | 36.929 | 115.1383 |
| 6.3618 | 14.99 | 701 | 1.6061 | 40.8051 | 17.4437 | 27.1414 | 36.494 | 113.8936 |
| 6.3618 | 16.0 | 748 | 1.6074 | 41.8104 | 18.0504 | 27.934 | 37.3843 | 114.8511 |
| 6.3618 | 16.98 | 794 | 1.6053 | 41.4314 | 17.955 | 27.7884 | 36.9083 | 114.3830 |
| 6.3618 | 17.99 | 841 | 1.6057 | 41.8533 | 18.0219 | 27.7616 | 37.4008 | 113.2128 |
| 6.3618 | 18.99 | 888 | 1.6060 | 41.5846 | 18.3563 | 28.4177 | 37.1366 | 112.1915 |
| 6.3618 | 19.68 | 920 | 1.6061 | 41.2146 | 18.153 | 28.4036 | 36.8514 | 111.1064 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.3.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2
|