File size: 1,968 Bytes
ccbfc8c
 
 
 
 
 
 
 
ce45345
ccbfc8c
 
 
 
 
 
8463172
ccbfc8c
 
 
adef6c2
 
 
 
 
 
ccbfc8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adef6c2
 
 
 
ccbfc8c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: mit
base_model: facebook/bart-large-xsum
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart_akshith
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart_akshith

This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co/facebook/bart-large-xsum) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6098
- Rouge1: 52.3831
- Rouge2: 27.5513
- Rougel: 43.5051
- Rougelsum: 48.1509
- Gen Len: 30.1941

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:------:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 1.4242        | 0.9997 | 1841 | 1.5158          | 52.6686 | 27.364  | 43.1196 | 47.9363   | 30.5824 |
| 1.0951        | 2.0    | 3683 | 1.5060          | 52.8177 | 27.6542 | 43.6251 | 48.207    | 30.2051 |
| 0.8624        | 2.9997 | 5524 | 1.5495          | 52.6928 | 28.1014 | 43.8451 | 48.4256   | 28.4212 |
| 0.6984        | 3.9989 | 7364 | 1.6098          | 52.3831 | 27.5513 | 43.5051 | 48.1509   | 30.1941 |


### Framework versions

- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1