--- library_name: transformers license: apache-2.0 base_model: facebook/dinov2-base tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 model-index: - name: dinov2-base-finetuned-Leukemia results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 1.0 - name: F1 type: f1 value: 1.0 --- # dinov2-base-finetuned-Leukemia This model is a fine-tuned version of [facebook/dinov2-base](https://huggingface.co/facebook/dinov2-base) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Accuracy: 1.0 - F1: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:| | 0.0541 | 0.9954 | 162 | 0.8475 | 0.9018 | 0.9047 | | 0.0667 | 1.9969 | 325 | 0.0745 | 0.9785 | 0.9780 | | 0.1317 | 2.9985 | 488 | 0.0159 | 0.9939 | 0.9939 | | 0.0187 | 4.0 | 651 | 0.0771 | 0.9877 | 0.9878 | | 0.0762 | 4.9954 | 813 | 0.1135 | 0.9877 | 0.9878 | | 0.006 | 5.9969 | 976 | 0.0502 | 0.9969 | 0.9969 | | 0.1322 | 6.9985 | 1139 | 0.0357 | 0.9969 | 0.9969 | | 0.0332 | 8.0 | 1302 | 0.0000 | 1.0 | 1.0 | | 0.0 | 8.9954 | 1464 | 0.0004 | 1.0 | 1.0 | | 0.0 | 9.9539 | 1620 | 0.0000 | 1.0 | 1.0 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1