AlanB commited on
Commit
d33f2b7
1 Parent(s): 97eec9b

Fixed using with peft loaded with if USE_PEFT_BACKEND

Browse files

Error was TypeError: Linear.forward() got an unexpected keyword argument 'scale'

Files changed (1) hide show
  1. pipeline.py +1016 -0
pipeline.py ADDED
@@ -0,0 +1,1016 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 Long Lian, the GLIGEN Authors, and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # This is a single file implementation of LMD+. See README.md for examples.
16
+
17
+ import ast
18
+ import gc
19
+ import math
20
+ import warnings
21
+ from collections.abc import Iterable
22
+ from typing import Any, Callable, Dict, List, Optional, Union
23
+
24
+ import torch
25
+ import torch.nn.functional as F
26
+ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
27
+
28
+ from diffusers.models import AutoencoderKL, UNet2DConditionModel
29
+ from diffusers.models.attention import Attention, GatedSelfAttentionDense
30
+ from diffusers.models.attention_processor import AttnProcessor2_0
31
+ from diffusers.pipelines.stable_diffusion import StableDiffusionPipeline
32
+ from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
33
+ from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
34
+ from diffusers.schedulers import KarrasDiffusionSchedulers
35
+ from diffusers.utils import logging, replace_example_docstring, USE_PEFT_BACKEND
36
+
37
+
38
+ EXAMPLE_DOC_STRING = """
39
+ Examples:
40
+ ```py
41
+ >>> import torch
42
+ >>> from diffusers import DiffusionPipeline
43
+
44
+ >>> pipe = DiffusionPipeline.from_pretrained(
45
+ ... "longlian/lmd_plus",
46
+ ... custom_pipeline="llm_grounded_diffusion",
47
+ ... variant="fp16", torch_dtype=torch.float16
48
+ ... )
49
+ >>> pipe.enable_model_cpu_offload()
50
+
51
+ >>> # Generate an image described by the prompt and
52
+ >>> # insert objects described by text at the region defined by bounding boxes
53
+ >>> prompt = "a waterfall and a modern high speed train in a beautiful forest with fall foliage"
54
+ >>> boxes = [[0.1387, 0.2051, 0.4277, 0.7090], [0.4980, 0.4355, 0.8516, 0.7266]]
55
+ >>> phrases = ["a waterfall", "a modern high speed train"]
56
+
57
+ >>> images = pipe(
58
+ ... prompt=prompt,
59
+ ... phrases=phrases,
60
+ ... boxes=boxes,
61
+ ... gligen_scheduled_sampling_beta=0.4,
62
+ ... output_type="pil",
63
+ ... num_inference_steps=50,
64
+ ... lmd_guidance_kwargs={}
65
+ ... ).images
66
+
67
+ >>> images[0].save("./lmd_plus_generation.jpg")
68
+
69
+ >>> # Generate directly from a text prompt and an LLM response
70
+ >>> prompt = "a waterfall and a modern high speed train in a beautiful forest with fall foliage"
71
+ >>> phrases, boxes, bg_prompt, neg_prompt = pipe.parse_llm_response(\"""
72
+ [('a waterfall', [71, 105, 148, 258]), ('a modern high speed train', [255, 223, 181, 149])]
73
+ Background prompt: A beautiful forest with fall foliage
74
+ Negative prompt:
75
+ \""")
76
+
77
+ >> images = pipe(
78
+ ... prompt=prompt,
79
+ ... negative_prompt=neg_prompt,
80
+ ... phrases=phrases,
81
+ ... boxes=boxes,
82
+ ... gligen_scheduled_sampling_beta=0.4,
83
+ ... output_type="pil",
84
+ ... num_inference_steps=50,
85
+ ... lmd_guidance_kwargs={}
86
+ ... ).images
87
+
88
+ >>> images[0].save("./lmd_plus_generation.jpg")
89
+
90
+ images[0]
91
+
92
+ ```
93
+ """
94
+
95
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
96
+
97
+ # All keys in Stable Diffusion models: [('down', 0, 0, 0), ('down', 0, 1, 0), ('down', 1, 0, 0), ('down', 1, 1, 0), ('down', 2, 0, 0), ('down', 2, 1, 0), ('mid', 0, 0, 0), ('up', 1, 0, 0), ('up', 1, 1, 0), ('up', 1, 2, 0), ('up', 2, 0, 0), ('up', 2, 1, 0), ('up', 2, 2, 0), ('up', 3, 0, 0), ('up', 3, 1, 0), ('up', 3, 2, 0)]
98
+ # Note that the first up block is `UpBlock2D` rather than `CrossAttnUpBlock2D` and does not have attention. The last index is always 0 in our case since we have one `BasicTransformerBlock` in each `Transformer2DModel`.
99
+ DEFAULT_GUIDANCE_ATTN_KEYS = [("mid", 0, 0, 0), ("up", 1, 0, 0), ("up", 1, 1, 0), ("up", 1, 2, 0)]
100
+
101
+
102
+ def convert_attn_keys(key):
103
+ """Convert the attention key from tuple format to the torch state format"""
104
+
105
+ if key[0] == "mid":
106
+ assert key[1] == 0, f"mid block only has one block but the index is {key[1]}"
107
+ return f"{key[0]}_block.attentions.{key[2]}.transformer_blocks.{key[3]}.attn2.processor"
108
+
109
+ return f"{key[0]}_blocks.{key[1]}.attentions.{key[2]}.transformer_blocks.{key[3]}.attn2.processor"
110
+
111
+
112
+ DEFAULT_GUIDANCE_ATTN_KEYS = [convert_attn_keys(key) for key in DEFAULT_GUIDANCE_ATTN_KEYS]
113
+
114
+
115
+ def scale_proportion(obj_box, H, W):
116
+ # Separately rounding box_w and box_h to allow shift invariant box sizes. Otherwise box sizes may change when both coordinates being rounded end with ".5".
117
+ x_min, y_min = round(obj_box[0] * W), round(obj_box[1] * H)
118
+ box_w, box_h = round((obj_box[2] - obj_box[0]) * W), round((obj_box[3] - obj_box[1]) * H)
119
+ x_max, y_max = x_min + box_w, y_min + box_h
120
+
121
+ x_min, y_min = max(x_min, 0), max(y_min, 0)
122
+ x_max, y_max = min(x_max, W), min(y_max, H)
123
+
124
+ return x_min, y_min, x_max, y_max
125
+
126
+
127
+ # Adapted from the parent class `AttnProcessor2_0`
128
+ class AttnProcessorWithHook(AttnProcessor2_0):
129
+ def __init__(self, attn_processor_key, hidden_size, cross_attention_dim, hook=None, fast_attn=True, enabled=True):
130
+ super().__init__()
131
+ self.attn_processor_key = attn_processor_key
132
+ self.hidden_size = hidden_size
133
+ self.cross_attention_dim = cross_attention_dim
134
+ self.hook = hook
135
+ self.fast_attn = fast_attn
136
+ self.enabled = enabled
137
+
138
+ def __call__(
139
+ self,
140
+ attn: Attention,
141
+ hidden_states,
142
+ encoder_hidden_states=None,
143
+ attention_mask=None,
144
+ temb=None,
145
+ scale: float = 1.0,
146
+ ):
147
+ residual = hidden_states
148
+
149
+ if attn.spatial_norm is not None:
150
+ hidden_states = attn.spatial_norm(hidden_states, temb)
151
+
152
+ input_ndim = hidden_states.ndim
153
+
154
+ if input_ndim == 4:
155
+ batch_size, channel, height, width = hidden_states.shape
156
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
157
+
158
+ batch_size, sequence_length, _ = (
159
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
160
+ )
161
+
162
+ if attention_mask is not None:
163
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
164
+
165
+ if attn.group_norm is not None:
166
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
167
+
168
+ args = () if USE_PEFT_BACKEND else (scale,)
169
+ query = attn.to_q(hidden_states, *args)
170
+
171
+ if encoder_hidden_states is None:
172
+ encoder_hidden_states = hidden_states
173
+ elif attn.norm_cross:
174
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
175
+
176
+ key = attn.to_k(encoder_hidden_states, *args)
177
+ value = attn.to_v(encoder_hidden_states, *args)
178
+
179
+ inner_dim = key.shape[-1]
180
+ head_dim = inner_dim // attn.heads
181
+
182
+ if (self.hook is not None and self.enabled) or not self.fast_attn:
183
+ query_batch_dim = attn.head_to_batch_dim(query)
184
+ key_batch_dim = attn.head_to_batch_dim(key)
185
+ value_batch_dim = attn.head_to_batch_dim(value)
186
+ attention_probs = attn.get_attention_scores(query_batch_dim, key_batch_dim, attention_mask)
187
+
188
+ if self.hook is not None and self.enabled:
189
+ # Call the hook with query, key, value, and attention maps
190
+ self.hook(self.attn_processor_key, query_batch_dim, key_batch_dim, value_batch_dim, attention_probs)
191
+
192
+ if self.fast_attn:
193
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
194
+
195
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
196
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
197
+
198
+ if attention_mask is not None:
199
+ # scaled_dot_product_attention expects attention_mask shape to be
200
+ # (batch, heads, source_length, target_length)
201
+ attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
202
+
203
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
204
+ # TODO: add support for attn.scale when we move to Torch 2.1
205
+ hidden_states = F.scaled_dot_product_attention(
206
+ query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
207
+ )
208
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
209
+ hidden_states = hidden_states.to(query.dtype)
210
+ else:
211
+ hidden_states = torch.bmm(attention_probs, value)
212
+ hidden_states = attn.batch_to_head_dim(hidden_states)
213
+
214
+ # linear proj
215
+ hidden_states = attn.to_out[0](hidden_states, *args)
216
+ # dropout
217
+ hidden_states = attn.to_out[1](hidden_states)
218
+
219
+ if input_ndim == 4:
220
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
221
+
222
+ if attn.residual_connection:
223
+ hidden_states = hidden_states + residual
224
+
225
+ hidden_states = hidden_states / attn.rescale_output_factor
226
+
227
+ return hidden_states
228
+
229
+
230
+ class LLMGroundedDiffusionPipeline(StableDiffusionPipeline):
231
+ r"""
232
+ Pipeline for layout-grounded text-to-image generation using LLM-grounded Diffusion (LMD+): https://arxiv.org/pdf/2305.13655.pdf.
233
+
234
+ This model inherits from [`StableDiffusionPipeline`] and aims at implementing the pipeline with minimal modifications. Check the superclass documentation for the generic methods
235
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
236
+
237
+ This is a simplified implementation that does not perform latent or attention transfer from single object generation to overall generation. The final image is generated directly with attention and adapters control.
238
+
239
+ Args:
240
+ vae ([`AutoencoderKL`]):
241
+ Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
242
+ text_encoder ([`~transformers.CLIPTextModel`]):
243
+ Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
244
+ tokenizer ([`~transformers.CLIPTokenizer`]):
245
+ A `CLIPTokenizer` to tokenize text.
246
+ unet ([`UNet2DConditionModel`]):
247
+ A `UNet2DConditionModel` to denoise the encoded image latents.
248
+ scheduler ([`SchedulerMixin`]):
249
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
250
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
251
+ safety_checker ([`StableDiffusionSafetyChecker`]):
252
+ Classification module that estimates whether generated images could be considered offensive or harmful.
253
+ Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
254
+ about a model's potential harms.
255
+ feature_extractor ([`~transformers.CLIPImageProcessor`]):
256
+ A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
257
+ requires_safety_checker (bool):
258
+ Whether a safety checker is needed for this pipeline.
259
+ """
260
+
261
+ objects_text = "Objects: "
262
+ bg_prompt_text = "Background prompt: "
263
+ bg_prompt_text_no_trailing_space = bg_prompt_text.rstrip()
264
+ neg_prompt_text = "Negative prompt: "
265
+ neg_prompt_text_no_trailing_space = neg_prompt_text.rstrip()
266
+
267
+ def __init__(
268
+ self,
269
+ vae: AutoencoderKL,
270
+ text_encoder: CLIPTextModel,
271
+ tokenizer: CLIPTokenizer,
272
+ unet: UNet2DConditionModel,
273
+ scheduler: KarrasDiffusionSchedulers,
274
+ safety_checker: StableDiffusionSafetyChecker,
275
+ feature_extractor: CLIPImageProcessor,
276
+ requires_safety_checker: bool = True,
277
+ ):
278
+ super().__init__(
279
+ vae, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor, requires_safety_checker
280
+ )
281
+
282
+ self.register_attn_hooks(unet)
283
+ self._saved_attn = None
284
+
285
+ def attn_hook(self, name, query, key, value, attention_probs):
286
+ if name in DEFAULT_GUIDANCE_ATTN_KEYS:
287
+ self._saved_attn[name] = attention_probs
288
+
289
+ @classmethod
290
+ def convert_box(cls, box, height, width):
291
+ # box: x, y, w, h (in 512 format) -> x_min, y_min, x_max, y_max
292
+ x_min, y_min = box[0] / width, box[1] / height
293
+ w_box, h_box = box[2] / width, box[3] / height
294
+
295
+ x_max, y_max = x_min + w_box, y_min + h_box
296
+
297
+ return x_min, y_min, x_max, y_max
298
+
299
+ @classmethod
300
+ def _parse_response_with_negative(cls, text):
301
+ if not text:
302
+ raise ValueError("LLM response is empty")
303
+
304
+ if cls.objects_text in text:
305
+ text = text.split(cls.objects_text)[1]
306
+
307
+ text_split = text.split(cls.bg_prompt_text_no_trailing_space)
308
+ if len(text_split) == 2:
309
+ gen_boxes, text_rem = text_split
310
+ else:
311
+ raise ValueError(f"LLM response is incomplete: {text}")
312
+
313
+ text_split = text_rem.split(cls.neg_prompt_text_no_trailing_space)
314
+
315
+ if len(text_split) == 2:
316
+ bg_prompt, neg_prompt = text_split
317
+ else:
318
+ raise ValueError(f"LLM response is incomplete: {text}")
319
+
320
+ try:
321
+ gen_boxes = ast.literal_eval(gen_boxes)
322
+ except SyntaxError as e:
323
+ # Sometimes the response is in plain text
324
+ if "No objects" in gen_boxes or gen_boxes.strip() == "":
325
+ gen_boxes = []
326
+ else:
327
+ raise e
328
+ bg_prompt = bg_prompt.strip()
329
+ neg_prompt = neg_prompt.strip()
330
+
331
+ # LLM may return "None" to mean no negative prompt provided.
332
+ if neg_prompt == "None":
333
+ neg_prompt = ""
334
+
335
+ return gen_boxes, bg_prompt, neg_prompt
336
+
337
+ @classmethod
338
+ def parse_llm_response(cls, response, canvas_height=512, canvas_width=512):
339
+ # Infer from spec
340
+ gen_boxes, bg_prompt, neg_prompt = cls._parse_response_with_negative(text=response)
341
+
342
+ gen_boxes = sorted(gen_boxes, key=lambda gen_box: gen_box[0])
343
+
344
+ phrases = [name for name, _ in gen_boxes]
345
+ boxes = [cls.convert_box(box, height=canvas_height, width=canvas_width) for _, box in gen_boxes]
346
+
347
+ return phrases, boxes, bg_prompt, neg_prompt
348
+
349
+ def check_inputs(
350
+ self,
351
+ prompt,
352
+ height,
353
+ width,
354
+ callback_steps,
355
+ phrases,
356
+ boxes,
357
+ negative_prompt=None,
358
+ prompt_embeds=None,
359
+ negative_prompt_embeds=None,
360
+ phrase_indices=None,
361
+ ):
362
+ if height % 8 != 0 or width % 8 != 0:
363
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
364
+
365
+ if (callback_steps is None) or (
366
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
367
+ ):
368
+ raise ValueError(
369
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
370
+ f" {type(callback_steps)}."
371
+ )
372
+
373
+ if prompt is not None and prompt_embeds is not None:
374
+ raise ValueError(
375
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
376
+ " only forward one of the two."
377
+ )
378
+ elif prompt is None and prompt_embeds is None:
379
+ raise ValueError(
380
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
381
+ )
382
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
383
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
384
+ elif prompt is None and phrase_indices is None:
385
+ raise ValueError("If the prompt is None, the phrase_indices cannot be None")
386
+
387
+ if negative_prompt is not None and negative_prompt_embeds is not None:
388
+ raise ValueError(
389
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
390
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
391
+ )
392
+
393
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
394
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
395
+ raise ValueError(
396
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
397
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
398
+ f" {negative_prompt_embeds.shape}."
399
+ )
400
+
401
+ if len(phrases) != len(boxes):
402
+ ValueError(
403
+ "length of `phrases` and `boxes` has to be same, but"
404
+ f" got: `phrases` {len(phrases)} != `boxes` {len(boxes)}"
405
+ )
406
+
407
+ def register_attn_hooks(self, unet):
408
+ """Registering hooks to obtain the attention maps for guidance"""
409
+
410
+ attn_procs = {}
411
+
412
+ for name in unet.attn_processors.keys():
413
+ # Only obtain the queries and keys from cross-attention
414
+ if name.endswith("attn1.processor") or name.endswith("fuser.attn.processor"):
415
+ # Keep the same attn_processors for self-attention (no hooks for self-attention)
416
+ attn_procs[name] = unet.attn_processors[name]
417
+ continue
418
+
419
+ cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
420
+
421
+ if name.startswith("mid_block"):
422
+ hidden_size = unet.config.block_out_channels[-1]
423
+ elif name.startswith("up_blocks"):
424
+ block_id = int(name[len("up_blocks.")])
425
+ hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
426
+ elif name.startswith("down_blocks"):
427
+ block_id = int(name[len("down_blocks.")])
428
+ hidden_size = unet.config.block_out_channels[block_id]
429
+
430
+ attn_procs[name] = AttnProcessorWithHook(
431
+ attn_processor_key=name,
432
+ hidden_size=hidden_size,
433
+ cross_attention_dim=cross_attention_dim,
434
+ hook=self.attn_hook,
435
+ fast_attn=True,
436
+ # Not enabled by default
437
+ enabled=False,
438
+ )
439
+
440
+ unet.set_attn_processor(attn_procs)
441
+
442
+ def enable_fuser(self, enabled=True):
443
+ for module in self.unet.modules():
444
+ if isinstance(module, GatedSelfAttentionDense):
445
+ module.enabled = enabled
446
+
447
+ def enable_attn_hook(self, enabled=True):
448
+ for module in self.unet.attn_processors.values():
449
+ if isinstance(module, AttnProcessorWithHook):
450
+ module.enabled = enabled
451
+
452
+ def get_token_map(self, prompt, padding="do_not_pad", verbose=False):
453
+ """Get a list of mapping: prompt index to str (prompt in a list of token str)"""
454
+ fg_prompt_tokens = self.tokenizer([prompt], padding=padding, max_length=77, return_tensors="np")
455
+ input_ids = fg_prompt_tokens["input_ids"][0]
456
+
457
+ token_map = []
458
+ for ind, item in enumerate(input_ids.tolist()):
459
+ token = self.tokenizer._convert_id_to_token(item)
460
+
461
+ if verbose:
462
+ logger.info(f"{ind}, {token} ({item})")
463
+
464
+ token_map.append(token)
465
+
466
+ return token_map
467
+
468
+ def get_phrase_indices(self, prompt, phrases, token_map=None, add_suffix_if_not_found=False, verbose=False):
469
+ for obj in phrases:
470
+ # Suffix the prompt with object name for attention guidance if object is not in the prompt, using "|" to separate the prompt and the suffix
471
+ if obj not in prompt:
472
+ prompt += "| " + obj
473
+
474
+ if token_map is None:
475
+ # We allow using a pre-computed token map.
476
+ token_map = self.get_token_map(prompt=prompt, padding="do_not_pad", verbose=verbose)
477
+ token_map_str = " ".join(token_map)
478
+
479
+ phrase_indices = []
480
+
481
+ for obj in phrases:
482
+ phrase_token_map = self.get_token_map(prompt=obj, padding="do_not_pad", verbose=verbose)
483
+ # Remove <bos> and <eos> in substr
484
+ phrase_token_map = phrase_token_map[1:-1]
485
+ phrase_token_map_len = len(phrase_token_map)
486
+ phrase_token_map_str = " ".join(phrase_token_map)
487
+
488
+ if verbose:
489
+ logger.info("Full str:", token_map_str, "Substr:", phrase_token_map_str, "Phrase:", phrases)
490
+
491
+ # Count the number of token before substr
492
+ # The substring comes with a trailing space that needs to be removed by minus one in the index.
493
+ obj_first_index = len(token_map_str[: token_map_str.index(phrase_token_map_str) - 1].split(" "))
494
+
495
+ obj_position = list(range(obj_first_index, obj_first_index + phrase_token_map_len))
496
+ phrase_indices.append(obj_position)
497
+
498
+ if add_suffix_if_not_found:
499
+ return phrase_indices, prompt
500
+
501
+ return phrase_indices
502
+
503
+ def add_ca_loss_per_attn_map_to_loss(
504
+ self,
505
+ loss,
506
+ attn_map,
507
+ object_number,
508
+ bboxes,
509
+ phrase_indices,
510
+ fg_top_p=0.2,
511
+ bg_top_p=0.2,
512
+ fg_weight=1.0,
513
+ bg_weight=1.0,
514
+ ):
515
+ # b is the number of heads, not batch
516
+ b, i, j = attn_map.shape
517
+ H = W = int(math.sqrt(i))
518
+ for obj_idx in range(object_number):
519
+ obj_loss = 0
520
+ mask = torch.zeros(size=(H, W), device="cuda")
521
+ obj_boxes = bboxes[obj_idx]
522
+
523
+ # We support two level (one box per phrase) and three level (multiple boxes per phrase)
524
+ if not isinstance(obj_boxes[0], Iterable):
525
+ obj_boxes = [obj_boxes]
526
+
527
+ for obj_box in obj_boxes:
528
+ # x_min, y_min, x_max, y_max = int(obj_box[0] * W), int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H)
529
+ x_min, y_min, x_max, y_max = scale_proportion(obj_box, H=H, W=W)
530
+ mask[y_min:y_max, x_min:x_max] = 1
531
+
532
+ for obj_position in phrase_indices[obj_idx]:
533
+ # Could potentially optimize to compute this for loop in batch.
534
+ # Could crop the ref cross attention before saving to save memory.
535
+
536
+ ca_map_obj = attn_map[:, :, obj_position].reshape(b, H, W)
537
+
538
+ # shape: (b, H * W)
539
+ ca_map_obj = attn_map[:, :, obj_position] # .reshape(b, H, W)
540
+ k_fg = (mask.sum() * fg_top_p).long().clamp_(min=1)
541
+ k_bg = ((1 - mask).sum() * bg_top_p).long().clamp_(min=1)
542
+
543
+ mask_1d = mask.view(1, -1)
544
+
545
+ # Max-based loss function
546
+
547
+ # Take the topk over spatial dimension, and then take the sum over heads dim
548
+ # The mean is over k_fg and k_bg dimension, so we don't need to sum and divide on our own.
549
+ obj_loss += (1 - (ca_map_obj * mask_1d).topk(k=k_fg).values.mean(dim=1)).sum(dim=0) * fg_weight
550
+ obj_loss += ((ca_map_obj * (1 - mask_1d)).topk(k=k_bg).values.mean(dim=1)).sum(dim=0) * bg_weight
551
+
552
+ loss += obj_loss / len(phrase_indices[obj_idx])
553
+
554
+ return loss
555
+
556
+ def compute_ca_loss(self, saved_attn, bboxes, phrase_indices, guidance_attn_keys, verbose=False, **kwargs):
557
+ """
558
+ The `saved_attn` is supposed to be passed to `save_attn_to_dict` in `cross_attention_kwargs` prior to computing ths loss.
559
+ `AttnProcessor` will put attention maps into the `save_attn_to_dict`.
560
+
561
+ `index` is the timestep.
562
+ `ref_ca_word_token_only`: This has precedence over `ref_ca_last_token_only` (i.e., if both are enabled, we take the token from word rather than the last token).
563
+ `ref_ca_last_token_only`: `ref_ca_saved_attn` comes from the attention map of the last token of the phrase in single object generation, so we apply it only to the last token of the phrase in overall generation if this is set to True. If set to False, `ref_ca_saved_attn` will be applied to all the text tokens.
564
+ """
565
+ loss = torch.tensor(0).float().cuda()
566
+ object_number = len(bboxes)
567
+ if object_number == 0:
568
+ return loss
569
+
570
+ for attn_key in guidance_attn_keys:
571
+ # We only have 1 cross attention for mid.
572
+
573
+ attn_map_integrated = saved_attn[attn_key]
574
+ if not attn_map_integrated.is_cuda:
575
+ attn_map_integrated = attn_map_integrated.cuda()
576
+ # Example dimension: [20, 64, 77]
577
+ attn_map = attn_map_integrated.squeeze(dim=0)
578
+
579
+ loss = self.add_ca_loss_per_attn_map_to_loss(
580
+ loss, attn_map, object_number, bboxes, phrase_indices, **kwargs
581
+ )
582
+
583
+ num_attn = len(guidance_attn_keys)
584
+
585
+ if num_attn > 0:
586
+ loss = loss / (object_number * num_attn)
587
+
588
+ return loss
589
+
590
+ @torch.no_grad()
591
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
592
+ def __call__(
593
+ self,
594
+ prompt: Union[str, List[str]] = None,
595
+ height: Optional[int] = None,
596
+ width: Optional[int] = None,
597
+ num_inference_steps: int = 50,
598
+ guidance_scale: float = 7.5,
599
+ gligen_scheduled_sampling_beta: float = 0.3,
600
+ phrases: List[str] = None,
601
+ boxes: List[List[float]] = None,
602
+ negative_prompt: Optional[Union[str, List[str]]] = None,
603
+ num_images_per_prompt: Optional[int] = 1,
604
+ eta: float = 0.0,
605
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
606
+ latents: Optional[torch.FloatTensor] = None,
607
+ prompt_embeds: Optional[torch.FloatTensor] = None,
608
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
609
+ output_type: Optional[str] = "pil",
610
+ return_dict: bool = True,
611
+ callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
612
+ callback_steps: int = 1,
613
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
614
+ clip_skip: Optional[int] = None,
615
+ lmd_guidance_kwargs: Optional[Dict[str, Any]] = {},
616
+ phrase_indices: Optional[List[int]] = None,
617
+ ):
618
+ r"""
619
+ The call function to the pipeline for generation.
620
+
621
+ Args:
622
+ prompt (`str` or `List[str]`, *optional*):
623
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
624
+ height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
625
+ The height in pixels of the generated image.
626
+ width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
627
+ The width in pixels of the generated image.
628
+ num_inference_steps (`int`, *optional*, defaults to 50):
629
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
630
+ expense of slower inference.
631
+ guidance_scale (`float`, *optional*, defaults to 7.5):
632
+ A higher guidance scale value encourages the model to generate images closely linked to the text
633
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
634
+ phrases (`List[str]`):
635
+ The phrases to guide what to include in each of the regions defined by the corresponding
636
+ `boxes`. There should only be one phrase per bounding box.
637
+ boxes (`List[List[float]]`):
638
+ The bounding boxes that identify rectangular regions of the image that are going to be filled with the
639
+ content described by the corresponding `phrases`. Each rectangular box is defined as a
640
+ `List[float]` of 4 elements `[xmin, ymin, xmax, ymax]` where each value is between [0,1].
641
+ gligen_scheduled_sampling_beta (`float`, defaults to 0.3):
642
+ Scheduled Sampling factor from [GLIGEN: Open-Set Grounded Text-to-Image
643
+ Generation](https://arxiv.org/pdf/2301.07093.pdf). Scheduled Sampling factor is only varied for
644
+ scheduled sampling during inference for improved quality and controllability.
645
+ negative_prompt (`str` or `List[str]`, *optional*):
646
+ The prompt or prompts to guide what to not include in image generation. If not defined, you need to
647
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
648
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
649
+ The number of images to generate per prompt.
650
+ eta (`float`, *optional*, defaults to 0.0):
651
+ Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
652
+ to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
653
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
654
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
655
+ generation deterministic.
656
+ latents (`torch.FloatTensor`, *optional*):
657
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
658
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
659
+ tensor is generated by sampling using the supplied random `generator`.
660
+ prompt_embeds (`torch.FloatTensor`, *optional*):
661
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
662
+ provided, text embeddings are generated from the `prompt` input argument.
663
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
664
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
665
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
666
+ output_type (`str`, *optional*, defaults to `"pil"`):
667
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
668
+ return_dict (`bool`, *optional*, defaults to `True`):
669
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
670
+ plain tuple.
671
+ callback (`Callable`, *optional*):
672
+ A function that calls every `callback_steps` steps during inference. The function is called with the
673
+ following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
674
+ callback_steps (`int`, *optional*, defaults to 1):
675
+ The frequency at which the `callback` function is called. If not specified, the callback is called at
676
+ every step.
677
+ cross_attention_kwargs (`dict`, *optional*):
678
+ A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
679
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
680
+ guidance_rescale (`float`, *optional*, defaults to 0.0):
681
+ Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
682
+ Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
683
+ using zero terminal SNR.
684
+ clip_skip (`int`, *optional*):
685
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
686
+ the output of the pre-final layer will be used for computing the prompt embeddings.
687
+ lmd_guidance_kwargs (`dict`, *optional*):
688
+ A kwargs dictionary that if specified is passed along to `latent_lmd_guidance` function. Useful keys include `loss_scale` (the guidance strength), `loss_threshold` (when loss is lower than this value, the guidance is not applied anymore), `max_iter` (the number of iterations of guidance for each step), and `guidance_timesteps` (the number of diffusion timesteps to apply guidance on). See `latent_lmd_guidance` for implementation details.
689
+ phrase_indices (`list` of `list`, *optional*): The indices of the tokens of each phrase in the overall prompt. If omitted, the pipeline will match the first token subsequence. The pipeline will append the missing phrases to the end of the prompt by default.
690
+ Examples:
691
+
692
+ Returns:
693
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
694
+ If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
695
+ otherwise a `tuple` is returned where the first element is a list with the generated images and the
696
+ second element is a list of `bool`s indicating whether the corresponding generated image contains
697
+ "not-safe-for-work" (nsfw) content.
698
+ """
699
+ # 0. Default height and width to unet
700
+ height = height or self.unet.config.sample_size * self.vae_scale_factor
701
+ width = width or self.unet.config.sample_size * self.vae_scale_factor
702
+
703
+ # 1. Check inputs. Raise error if not correct
704
+ self.check_inputs(
705
+ prompt,
706
+ height,
707
+ width,
708
+ callback_steps,
709
+ phrases,
710
+ boxes,
711
+ negative_prompt,
712
+ prompt_embeds,
713
+ negative_prompt_embeds,
714
+ phrase_indices,
715
+ )
716
+
717
+ # 2. Define call parameters
718
+ if prompt is not None and isinstance(prompt, str):
719
+ batch_size = 1
720
+ if phrase_indices is None:
721
+ phrase_indices, prompt = self.get_phrase_indices(prompt, phrases, add_suffix_if_not_found=True)
722
+ elif prompt is not None and isinstance(prompt, list):
723
+ batch_size = len(prompt)
724
+ if phrase_indices is None:
725
+ phrase_indices = []
726
+ prompt_parsed = []
727
+ for prompt_item in prompt:
728
+ phrase_indices_parsed_item, prompt_parsed_item = self.get_phrase_indices(
729
+ prompt_item, add_suffix_if_not_found=True
730
+ )
731
+ phrase_indices.append(phrase_indices_parsed_item)
732
+ prompt_parsed.append(prompt_parsed_item)
733
+ prompt = prompt_parsed
734
+ else:
735
+ batch_size = prompt_embeds.shape[0]
736
+
737
+ device = self._execution_device
738
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
739
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
740
+ # corresponds to doing no classifier free guidance.
741
+ do_classifier_free_guidance = guidance_scale > 1.0
742
+
743
+ # 3. Encode input prompt
744
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
745
+ prompt,
746
+ device,
747
+ num_images_per_prompt,
748
+ do_classifier_free_guidance,
749
+ negative_prompt,
750
+ prompt_embeds=prompt_embeds,
751
+ negative_prompt_embeds=negative_prompt_embeds,
752
+ clip_skip=clip_skip,
753
+ )
754
+
755
+ cond_prompt_embeds = prompt_embeds
756
+
757
+ # For classifier free guidance, we need to do two forward passes.
758
+ # Here we concatenate the unconditional and text embeddings into a single batch
759
+ # to avoid doing two forward passes
760
+ if do_classifier_free_guidance:
761
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
762
+
763
+ # 4. Prepare timesteps
764
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
765
+ timesteps = self.scheduler.timesteps
766
+
767
+ # 5. Prepare latent variables
768
+ num_channels_latents = self.unet.config.in_channels
769
+ latents = self.prepare_latents(
770
+ batch_size * num_images_per_prompt,
771
+ num_channels_latents,
772
+ height,
773
+ width,
774
+ prompt_embeds.dtype,
775
+ device,
776
+ generator,
777
+ latents,
778
+ )
779
+
780
+ # 5.1 Prepare GLIGEN variables
781
+ max_objs = 30
782
+ if len(boxes) > max_objs:
783
+ warnings.warn(
784
+ f"More that {max_objs} objects found. Only first {max_objs} objects will be processed.",
785
+ FutureWarning,
786
+ )
787
+ phrases = phrases[:max_objs]
788
+ boxes = boxes[:max_objs]
789
+
790
+ n_objs = len(boxes)
791
+ if n_objs:
792
+ # prepare batched input to the PositionNet (boxes, phrases, mask)
793
+ # Get tokens for phrases from pre-trained CLIPTokenizer
794
+ tokenizer_inputs = self.tokenizer(phrases, padding=True, return_tensors="pt").to(device)
795
+ # For the token, we use the same pre-trained text encoder
796
+ # to obtain its text feature
797
+ _text_embeddings = self.text_encoder(**tokenizer_inputs).pooler_output
798
+
799
+ # For each entity, described in phrases, is denoted with a bounding box,
800
+ # we represent the location information as (xmin,ymin,xmax,ymax)
801
+ cond_boxes = torch.zeros(max_objs, 4, device=device, dtype=self.text_encoder.dtype)
802
+ if n_objs:
803
+ cond_boxes[:n_objs] = torch.tensor(boxes)
804
+ text_embeddings = torch.zeros(
805
+ max_objs, self.unet.config.cross_attention_dim, device=device, dtype=self.text_encoder.dtype
806
+ )
807
+ if n_objs:
808
+ text_embeddings[:n_objs] = _text_embeddings
809
+ # Generate a mask for each object that is entity described by phrases
810
+ masks = torch.zeros(max_objs, device=device, dtype=self.text_encoder.dtype)
811
+ masks[:n_objs] = 1
812
+
813
+ repeat_batch = batch_size * num_images_per_prompt
814
+ cond_boxes = cond_boxes.unsqueeze(0).expand(repeat_batch, -1, -1).clone()
815
+ text_embeddings = text_embeddings.unsqueeze(0).expand(repeat_batch, -1, -1).clone()
816
+ masks = masks.unsqueeze(0).expand(repeat_batch, -1).clone()
817
+ if do_classifier_free_guidance:
818
+ repeat_batch = repeat_batch * 2
819
+ cond_boxes = torch.cat([cond_boxes] * 2)
820
+ text_embeddings = torch.cat([text_embeddings] * 2)
821
+ masks = torch.cat([masks] * 2)
822
+ masks[: repeat_batch // 2] = 0
823
+ if cross_attention_kwargs is None:
824
+ cross_attention_kwargs = {}
825
+ cross_attention_kwargs["gligen"] = {
826
+ "boxes": cond_boxes,
827
+ "positive_embeddings": text_embeddings,
828
+ "masks": masks,
829
+ }
830
+
831
+ num_grounding_steps = int(gligen_scheduled_sampling_beta * len(timesteps))
832
+ self.enable_fuser(True)
833
+
834
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
835
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
836
+
837
+ loss_attn = torch.tensor(10000.0)
838
+
839
+ # 7. Denoising loop
840
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
841
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
842
+ for i, t in enumerate(timesteps):
843
+ # Scheduled sampling
844
+ if i == num_grounding_steps:
845
+ self.enable_fuser(False)
846
+
847
+ if latents.shape[1] != 4:
848
+ latents = torch.randn_like(latents[:, :4])
849
+
850
+ # 7.1 Perform LMD guidance
851
+ if boxes:
852
+ latents, loss_attn = self.latent_lmd_guidance(
853
+ cond_prompt_embeds,
854
+ index=i,
855
+ boxes=boxes,
856
+ phrase_indices=phrase_indices,
857
+ t=t,
858
+ latents=latents,
859
+ loss=loss_attn,
860
+ **lmd_guidance_kwargs,
861
+ )
862
+
863
+ # expand the latents if we are doing classifier free guidance
864
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
865
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
866
+
867
+ # predict the noise residual
868
+ noise_pred = self.unet(
869
+ latent_model_input,
870
+ t,
871
+ encoder_hidden_states=prompt_embeds,
872
+ cross_attention_kwargs=cross_attention_kwargs,
873
+ ).sample
874
+
875
+ # perform guidance
876
+ if do_classifier_free_guidance:
877
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
878
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
879
+
880
+ # compute the previous noisy sample x_t -> x_t-1
881
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
882
+
883
+ # call the callback, if provided
884
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
885
+ progress_bar.update()
886
+ if callback is not None and i % callback_steps == 0:
887
+ step_idx = i // getattr(self.scheduler, "order", 1)
888
+ callback(step_idx, t, latents)
889
+
890
+ if not output_type == "latent":
891
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
892
+ image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
893
+ else:
894
+ image = latents
895
+ has_nsfw_concept = None
896
+
897
+ if has_nsfw_concept is None:
898
+ do_denormalize = [True] * image.shape[0]
899
+ else:
900
+ do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
901
+
902
+ image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
903
+
904
+ # Offload last model to CPU
905
+ if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
906
+ self.final_offload_hook.offload()
907
+
908
+ if not return_dict:
909
+ return (image, has_nsfw_concept)
910
+
911
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
912
+
913
+ @torch.set_grad_enabled(True)
914
+ def latent_lmd_guidance(
915
+ self,
916
+ cond_embeddings,
917
+ index,
918
+ boxes,
919
+ phrase_indices,
920
+ t,
921
+ latents,
922
+ loss,
923
+ *,
924
+ loss_scale=20,
925
+ loss_threshold=5.0,
926
+ max_iter=[3] * 5 + [2] * 5 + [1] * 5,
927
+ guidance_timesteps=15,
928
+ cross_attention_kwargs=None,
929
+ guidance_attn_keys=DEFAULT_GUIDANCE_ATTN_KEYS,
930
+ verbose=False,
931
+ clear_cache=False,
932
+ unet_additional_kwargs={},
933
+ guidance_callback=None,
934
+ **kwargs,
935
+ ):
936
+ scheduler, unet = self.scheduler, self.unet
937
+
938
+ iteration = 0
939
+
940
+ if index < guidance_timesteps:
941
+ if isinstance(max_iter, list):
942
+ max_iter = max_iter[index]
943
+
944
+ if verbose:
945
+ logger.info(
946
+ f"time index {index}, loss: {loss.item()/loss_scale:.3f} (de-scaled with scale {loss_scale:.1f}), loss threshold: {loss_threshold:.3f}"
947
+ )
948
+
949
+ try:
950
+ self.enable_attn_hook(enabled=True)
951
+
952
+ while (
953
+ loss.item() / loss_scale > loss_threshold and iteration < max_iter and index < guidance_timesteps
954
+ ):
955
+ self._saved_attn = {}
956
+
957
+ latents.requires_grad_(True)
958
+ latent_model_input = latents
959
+ latent_model_input = scheduler.scale_model_input(latent_model_input, t)
960
+
961
+ unet(
962
+ latent_model_input,
963
+ t,
964
+ encoder_hidden_states=cond_embeddings,
965
+ cross_attention_kwargs=cross_attention_kwargs,
966
+ **unet_additional_kwargs,
967
+ )
968
+
969
+ # update latents with guidance
970
+ loss = (
971
+ self.compute_ca_loss(
972
+ saved_attn=self._saved_attn,
973
+ bboxes=boxes,
974
+ phrase_indices=phrase_indices,
975
+ guidance_attn_keys=guidance_attn_keys,
976
+ verbose=verbose,
977
+ **kwargs,
978
+ )
979
+ * loss_scale
980
+ )
981
+
982
+ if torch.isnan(loss):
983
+ raise RuntimeError("**Loss is NaN**")
984
+
985
+ # This callback allows visualizations.
986
+ if guidance_callback is not None:
987
+ guidance_callback(self, latents, loss, iteration, index)
988
+
989
+ self._saved_attn = None
990
+
991
+ grad_cond = torch.autograd.grad(loss.requires_grad_(True), [latents])[0]
992
+
993
+ latents.requires_grad_(False)
994
+
995
+ # Scaling with classifier guidance
996
+ alpha_prod_t = scheduler.alphas_cumprod[t]
997
+ # Classifier guidance: https://arxiv.org/pdf/2105.05233.pdf
998
+ # DDIM: https://arxiv.org/pdf/2010.02502.pdf
999
+ scale = (1 - alpha_prod_t) ** (0.5)
1000
+ latents = latents - scale * grad_cond
1001
+
1002
+ iteration += 1
1003
+
1004
+ if clear_cache:
1005
+ gc.collect()
1006
+ torch.cuda.empty_cache()
1007
+
1008
+ if verbose:
1009
+ logger.info(
1010
+ f"time index {index}, loss: {loss.item()/loss_scale:.3f}, loss threshold: {loss_threshold:.3f}, iteration: {iteration}"
1011
+ )
1012
+
1013
+ finally:
1014
+ self.enable_attn_hook(enabled=False)
1015
+
1016
+ return latents, loss