Had to fix No module named 'diffusers.models.unet_motion_model'
Browse filesThey forgot .unets, I should submit the error. Used in https://DiffusionDeluxe.com
- pipeline.py +990 -0
pipeline.py
ADDED
@@ -0,0 +1,990 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
from dataclasses import dataclass
|
17 |
+
from types import FunctionType
|
18 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
import torch
|
22 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
23 |
+
|
24 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
25 |
+
from diffusers.loaders import IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
26 |
+
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel, UNetMotionModel
|
27 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
28 |
+
#from diffusers.models.unet_motion_model import MotionAdapter
|
29 |
+
from diffusers.models.unets.unet_motion_model import MotionAdapter
|
30 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
31 |
+
from diffusers.schedulers import (
|
32 |
+
DDIMScheduler,
|
33 |
+
DPMSolverMultistepScheduler,
|
34 |
+
EulerAncestralDiscreteScheduler,
|
35 |
+
EulerDiscreteScheduler,
|
36 |
+
LMSDiscreteScheduler,
|
37 |
+
PNDMScheduler,
|
38 |
+
)
|
39 |
+
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, logging, scale_lora_layers, unscale_lora_layers
|
40 |
+
from diffusers.utils.torch_utils import randn_tensor
|
41 |
+
|
42 |
+
|
43 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
44 |
+
|
45 |
+
EXAMPLE_DOC_STRING = """
|
46 |
+
Examples:
|
47 |
+
```py
|
48 |
+
>>> import torch
|
49 |
+
>>> from diffusers import MotionAdapter, DiffusionPipeline, DDIMScheduler
|
50 |
+
>>> from diffusers.utils import export_to_gif, load_image
|
51 |
+
|
52 |
+
>>> adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2")
|
53 |
+
>>> pipe = DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V5.1_noVAE", motion_adapter=adapter, custom_pipeline="pipeline_animatediff_img2video").to("cuda")
|
54 |
+
>>> pipe.scheduler = DDIMScheduler(beta_schedule="linear", steps_offset=1, clip_sample=False, timespace_spacing="linspace")
|
55 |
+
|
56 |
+
>>> image = load_image("snail.png")
|
57 |
+
>>> output = pipe(image=image, prompt="A snail moving on the ground", strength=0.8, latent_interpolation_method="slerp")
|
58 |
+
>>> frames = output.frames[0]
|
59 |
+
>>> export_to_gif(frames, "animation.gif")
|
60 |
+
```
|
61 |
+
"""
|
62 |
+
|
63 |
+
|
64 |
+
def lerp(
|
65 |
+
v0: torch.Tensor,
|
66 |
+
v1: torch.Tensor,
|
67 |
+
t: Union[float, torch.Tensor],
|
68 |
+
) -> torch.Tensor:
|
69 |
+
r"""
|
70 |
+
Linear Interpolation between two tensors.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
v0 (`torch.Tensor`): First tensor.
|
74 |
+
v1 (`torch.Tensor`): Second tensor.
|
75 |
+
t: (`float` or `torch.Tensor`): Interpolation factor.
|
76 |
+
"""
|
77 |
+
t_is_float = False
|
78 |
+
input_device = v0.device
|
79 |
+
v0 = v0.cpu().numpy()
|
80 |
+
v1 = v1.cpu().numpy()
|
81 |
+
|
82 |
+
if isinstance(t, torch.Tensor):
|
83 |
+
t = t.cpu().numpy()
|
84 |
+
else:
|
85 |
+
t_is_float = True
|
86 |
+
t = np.array([t], dtype=v0.dtype)
|
87 |
+
|
88 |
+
t = t[..., None]
|
89 |
+
v0 = v0[None, ...]
|
90 |
+
v1 = v1[None, ...]
|
91 |
+
v2 = (1 - t) * v0 + t * v1
|
92 |
+
|
93 |
+
if t_is_float and v0.ndim > 1:
|
94 |
+
assert v2.shape[0] == 1
|
95 |
+
v2 = np.squeeze(v2, axis=0)
|
96 |
+
|
97 |
+
v2 = torch.from_numpy(v2).to(input_device)
|
98 |
+
return v2
|
99 |
+
|
100 |
+
|
101 |
+
def slerp(
|
102 |
+
v0: torch.Tensor,
|
103 |
+
v1: torch.Tensor,
|
104 |
+
t: Union[float, torch.Tensor],
|
105 |
+
DOT_THRESHOLD: float = 0.9995,
|
106 |
+
) -> torch.Tensor:
|
107 |
+
r"""
|
108 |
+
Spherical Linear Interpolation between two tensors.
|
109 |
+
|
110 |
+
Args:
|
111 |
+
v0 (`torch.Tensor`): First tensor.
|
112 |
+
v1 (`torch.Tensor`): Second tensor.
|
113 |
+
t: (`float` or `torch.Tensor`): Interpolation factor.
|
114 |
+
DOT_THRESHOLD (`float`):
|
115 |
+
Dot product threshold exceeding which linear interpolation will be used
|
116 |
+
because input tensors are close to parallel.
|
117 |
+
"""
|
118 |
+
t_is_float = False
|
119 |
+
input_device = v0.device
|
120 |
+
v0 = v0.cpu().numpy()
|
121 |
+
v1 = v1.cpu().numpy()
|
122 |
+
|
123 |
+
if isinstance(t, torch.Tensor):
|
124 |
+
t = t.cpu().numpy()
|
125 |
+
else:
|
126 |
+
t_is_float = True
|
127 |
+
t = np.array([t], dtype=v0.dtype)
|
128 |
+
|
129 |
+
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
|
130 |
+
|
131 |
+
if np.abs(dot) > DOT_THRESHOLD:
|
132 |
+
# v0 and v1 are close to parallel, so use linear interpolation instead
|
133 |
+
v2 = lerp(v0, v1, t)
|
134 |
+
else:
|
135 |
+
theta_0 = np.arccos(dot)
|
136 |
+
sin_theta_0 = np.sin(theta_0)
|
137 |
+
theta_t = theta_0 * t
|
138 |
+
sin_theta_t = np.sin(theta_t)
|
139 |
+
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
|
140 |
+
s1 = sin_theta_t / sin_theta_0
|
141 |
+
s0 = s0[..., None]
|
142 |
+
s1 = s1[..., None]
|
143 |
+
v0 = v0[None, ...]
|
144 |
+
v1 = v1[None, ...]
|
145 |
+
v2 = s0 * v0 + s1 * v1
|
146 |
+
|
147 |
+
if t_is_float and v0.ndim > 1:
|
148 |
+
assert v2.shape[0] == 1
|
149 |
+
v2 = np.squeeze(v2, axis=0)
|
150 |
+
|
151 |
+
v2 = torch.from_numpy(v2).to(input_device)
|
152 |
+
return v2
|
153 |
+
|
154 |
+
|
155 |
+
def tensor2vid(video: torch.Tensor, processor, output_type="np"):
|
156 |
+
# Based on:
|
157 |
+
# https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/pipelines/multi_modal/text_to_video_synthesis_pipeline.py#L78
|
158 |
+
|
159 |
+
batch_size, channels, num_frames, height, width = video.shape
|
160 |
+
outputs = []
|
161 |
+
for batch_idx in range(batch_size):
|
162 |
+
batch_vid = video[batch_idx].permute(1, 0, 2, 3)
|
163 |
+
batch_output = processor.postprocess(batch_vid, output_type)
|
164 |
+
|
165 |
+
outputs.append(batch_output)
|
166 |
+
|
167 |
+
return outputs
|
168 |
+
|
169 |
+
|
170 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
171 |
+
def retrieve_latents(
|
172 |
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
173 |
+
):
|
174 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
175 |
+
return encoder_output.latent_dist.sample(generator)
|
176 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
177 |
+
return encoder_output.latent_dist.mode()
|
178 |
+
elif hasattr(encoder_output, "latents"):
|
179 |
+
return encoder_output.latents
|
180 |
+
else:
|
181 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
182 |
+
|
183 |
+
|
184 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
185 |
+
def retrieve_timesteps(
|
186 |
+
scheduler,
|
187 |
+
num_inference_steps: Optional[int] = None,
|
188 |
+
device: Optional[Union[str, torch.device]] = None,
|
189 |
+
timesteps: Optional[List[int]] = None,
|
190 |
+
**kwargs,
|
191 |
+
):
|
192 |
+
"""
|
193 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
194 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
195 |
+
|
196 |
+
Args:
|
197 |
+
scheduler (`SchedulerMixin`):
|
198 |
+
The scheduler to get timesteps from.
|
199 |
+
num_inference_steps (`int`):
|
200 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
201 |
+
`timesteps` must be `None`.
|
202 |
+
device (`str` or `torch.device`, *optional*):
|
203 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
204 |
+
timesteps (`List[int]`, *optional*):
|
205 |
+
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
206 |
+
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
|
207 |
+
must be `None`.
|
208 |
+
|
209 |
+
Returns:
|
210 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
211 |
+
second element is the number of inference steps.
|
212 |
+
"""
|
213 |
+
if timesteps is not None:
|
214 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
215 |
+
if not accepts_timesteps:
|
216 |
+
raise ValueError(
|
217 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
218 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
219 |
+
)
|
220 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
221 |
+
timesteps = scheduler.timesteps
|
222 |
+
num_inference_steps = len(timesteps)
|
223 |
+
else:
|
224 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
225 |
+
timesteps = scheduler.timesteps
|
226 |
+
return timesteps, num_inference_steps
|
227 |
+
|
228 |
+
|
229 |
+
@dataclass
|
230 |
+
class AnimateDiffImgToVideoPipelineOutput(BaseOutput):
|
231 |
+
frames: Union[torch.Tensor, np.ndarray]
|
232 |
+
|
233 |
+
|
234 |
+
class AnimateDiffImgToVideoPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdapterMixin, LoraLoaderMixin):
|
235 |
+
r"""
|
236 |
+
Pipeline for text-to-video generation.
|
237 |
+
|
238 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
239 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
240 |
+
|
241 |
+
The pipeline also inherits the following loading methods:
|
242 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
243 |
+
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
244 |
+
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
245 |
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
246 |
+
|
247 |
+
Args:
|
248 |
+
vae ([`AutoencoderKL`]):
|
249 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
250 |
+
text_encoder ([`CLIPTextModel`]):
|
251 |
+
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
252 |
+
tokenizer (`CLIPTokenizer`):
|
253 |
+
A [`~transformers.CLIPTokenizer`] to tokenize text.
|
254 |
+
unet ([`UNet2DConditionModel`]):
|
255 |
+
A [`UNet2DConditionModel`] used to create a UNetMotionModel to denoise the encoded video latents.
|
256 |
+
motion_adapter ([`MotionAdapter`]):
|
257 |
+
A [`MotionAdapter`] to be used in combination with `unet` to denoise the encoded video latents.
|
258 |
+
scheduler ([`SchedulerMixin`]):
|
259 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
260 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
261 |
+
"""
|
262 |
+
|
263 |
+
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
|
264 |
+
_optional_components = ["feature_extractor", "image_encoder"]
|
265 |
+
|
266 |
+
def __init__(
|
267 |
+
self,
|
268 |
+
vae: AutoencoderKL,
|
269 |
+
text_encoder: CLIPTextModel,
|
270 |
+
tokenizer: CLIPTokenizer,
|
271 |
+
unet: UNet2DConditionModel,
|
272 |
+
motion_adapter: MotionAdapter,
|
273 |
+
scheduler: Union[
|
274 |
+
DDIMScheduler,
|
275 |
+
PNDMScheduler,
|
276 |
+
LMSDiscreteScheduler,
|
277 |
+
EulerDiscreteScheduler,
|
278 |
+
EulerAncestralDiscreteScheduler,
|
279 |
+
DPMSolverMultistepScheduler,
|
280 |
+
],
|
281 |
+
feature_extractor: CLIPImageProcessor = None,
|
282 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
283 |
+
):
|
284 |
+
super().__init__()
|
285 |
+
unet = UNetMotionModel.from_unet2d(unet, motion_adapter)
|
286 |
+
|
287 |
+
self.register_modules(
|
288 |
+
vae=vae,
|
289 |
+
text_encoder=text_encoder,
|
290 |
+
tokenizer=tokenizer,
|
291 |
+
unet=unet,
|
292 |
+
motion_adapter=motion_adapter,
|
293 |
+
scheduler=scheduler,
|
294 |
+
feature_extractor=feature_extractor,
|
295 |
+
image_encoder=image_encoder,
|
296 |
+
)
|
297 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
298 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
299 |
+
|
300 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt with num_images_per_prompt -> num_videos_per_prompt
|
301 |
+
def encode_prompt(
|
302 |
+
self,
|
303 |
+
prompt,
|
304 |
+
device,
|
305 |
+
num_images_per_prompt,
|
306 |
+
do_classifier_free_guidance,
|
307 |
+
negative_prompt=None,
|
308 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
309 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
310 |
+
lora_scale: Optional[float] = None,
|
311 |
+
clip_skip: Optional[int] = None,
|
312 |
+
):
|
313 |
+
r"""
|
314 |
+
Encodes the prompt into text encoder hidden states.
|
315 |
+
|
316 |
+
Args:
|
317 |
+
prompt (`str` or `List[str]`, *optional*):
|
318 |
+
prompt to be encoded
|
319 |
+
device: (`torch.device`):
|
320 |
+
torch device
|
321 |
+
num_images_per_prompt (`int`):
|
322 |
+
number of images that should be generated per prompt
|
323 |
+
do_classifier_free_guidance (`bool`):
|
324 |
+
whether to use classifier free guidance or not
|
325 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
326 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
327 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
328 |
+
less than `1`).
|
329 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
330 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
331 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
332 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
333 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
334 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
335 |
+
argument.
|
336 |
+
lora_scale (`float`, *optional*):
|
337 |
+
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
338 |
+
clip_skip (`int`, *optional*):
|
339 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
340 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
341 |
+
"""
|
342 |
+
# set lora scale so that monkey patched LoRA
|
343 |
+
# function of text encoder can correctly access it
|
344 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
345 |
+
self._lora_scale = lora_scale
|
346 |
+
|
347 |
+
# dynamically adjust the LoRA scale
|
348 |
+
if not USE_PEFT_BACKEND:
|
349 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
350 |
+
else:
|
351 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
352 |
+
|
353 |
+
if prompt is not None and isinstance(prompt, str):
|
354 |
+
batch_size = 1
|
355 |
+
elif prompt is not None and isinstance(prompt, list):
|
356 |
+
batch_size = len(prompt)
|
357 |
+
else:
|
358 |
+
batch_size = prompt_embeds.shape[0]
|
359 |
+
|
360 |
+
if prompt_embeds is None:
|
361 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
362 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
363 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
364 |
+
|
365 |
+
text_inputs = self.tokenizer(
|
366 |
+
prompt,
|
367 |
+
padding="max_length",
|
368 |
+
max_length=self.tokenizer.model_max_length,
|
369 |
+
truncation=True,
|
370 |
+
return_tensors="pt",
|
371 |
+
)
|
372 |
+
text_input_ids = text_inputs.input_ids
|
373 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
374 |
+
|
375 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
376 |
+
text_input_ids, untruncated_ids
|
377 |
+
):
|
378 |
+
removed_text = self.tokenizer.batch_decode(
|
379 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
380 |
+
)
|
381 |
+
logger.warning(
|
382 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
383 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
384 |
+
)
|
385 |
+
|
386 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
387 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
388 |
+
else:
|
389 |
+
attention_mask = None
|
390 |
+
|
391 |
+
if clip_skip is None:
|
392 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
|
393 |
+
prompt_embeds = prompt_embeds[0]
|
394 |
+
else:
|
395 |
+
prompt_embeds = self.text_encoder(
|
396 |
+
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
|
397 |
+
)
|
398 |
+
# Access the `hidden_states` first, that contains a tuple of
|
399 |
+
# all the hidden states from the encoder layers. Then index into
|
400 |
+
# the tuple to access the hidden states from the desired layer.
|
401 |
+
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
|
402 |
+
# We also need to apply the final LayerNorm here to not mess with the
|
403 |
+
# representations. The `last_hidden_states` that we typically use for
|
404 |
+
# obtaining the final prompt representations passes through the LayerNorm
|
405 |
+
# layer.
|
406 |
+
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
|
407 |
+
|
408 |
+
if self.text_encoder is not None:
|
409 |
+
prompt_embeds_dtype = self.text_encoder.dtype
|
410 |
+
elif self.unet is not None:
|
411 |
+
prompt_embeds_dtype = self.unet.dtype
|
412 |
+
else:
|
413 |
+
prompt_embeds_dtype = prompt_embeds.dtype
|
414 |
+
|
415 |
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
416 |
+
|
417 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
418 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
419 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
420 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
421 |
+
|
422 |
+
# get unconditional embeddings for classifier free guidance
|
423 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
424 |
+
uncond_tokens: List[str]
|
425 |
+
if negative_prompt is None:
|
426 |
+
uncond_tokens = [""] * batch_size
|
427 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
428 |
+
raise TypeError(
|
429 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
430 |
+
f" {type(prompt)}."
|
431 |
+
)
|
432 |
+
elif isinstance(negative_prompt, str):
|
433 |
+
uncond_tokens = [negative_prompt]
|
434 |
+
elif batch_size != len(negative_prompt):
|
435 |
+
raise ValueError(
|
436 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
437 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
438 |
+
" the batch size of `prompt`."
|
439 |
+
)
|
440 |
+
else:
|
441 |
+
uncond_tokens = negative_prompt
|
442 |
+
|
443 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
444 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
445 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
446 |
+
|
447 |
+
max_length = prompt_embeds.shape[1]
|
448 |
+
uncond_input = self.tokenizer(
|
449 |
+
uncond_tokens,
|
450 |
+
padding="max_length",
|
451 |
+
max_length=max_length,
|
452 |
+
truncation=True,
|
453 |
+
return_tensors="pt",
|
454 |
+
)
|
455 |
+
|
456 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
457 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
458 |
+
else:
|
459 |
+
attention_mask = None
|
460 |
+
|
461 |
+
negative_prompt_embeds = self.text_encoder(
|
462 |
+
uncond_input.input_ids.to(device),
|
463 |
+
attention_mask=attention_mask,
|
464 |
+
)
|
465 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
466 |
+
|
467 |
+
if do_classifier_free_guidance:
|
468 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
469 |
+
seq_len = negative_prompt_embeds.shape[1]
|
470 |
+
|
471 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
472 |
+
|
473 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
474 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
475 |
+
|
476 |
+
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
|
477 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
478 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
479 |
+
|
480 |
+
return prompt_embeds, negative_prompt_embeds
|
481 |
+
|
482 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
483 |
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
484 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
485 |
+
|
486 |
+
if not isinstance(image, torch.Tensor):
|
487 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
488 |
+
|
489 |
+
image = image.to(device=device, dtype=dtype)
|
490 |
+
if output_hidden_states:
|
491 |
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
492 |
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
493 |
+
uncond_image_enc_hidden_states = self.image_encoder(
|
494 |
+
torch.zeros_like(image), output_hidden_states=True
|
495 |
+
).hidden_states[-2]
|
496 |
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
497 |
+
num_images_per_prompt, dim=0
|
498 |
+
)
|
499 |
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
500 |
+
else:
|
501 |
+
image_embeds = self.image_encoder(image).image_embeds
|
502 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
503 |
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
504 |
+
|
505 |
+
return image_embeds, uncond_image_embeds
|
506 |
+
|
507 |
+
# Copied from diffusers.pipelines.text_to_video_synthesis/pipeline_text_to_video_synth.TextToVideoSDPipeline.decode_latents
|
508 |
+
def decode_latents(self, latents):
|
509 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
510 |
+
|
511 |
+
batch_size, channels, num_frames, height, width = latents.shape
|
512 |
+
latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)
|
513 |
+
|
514 |
+
image = self.vae.decode(latents).sample
|
515 |
+
video = (
|
516 |
+
image[None, :]
|
517 |
+
.reshape(
|
518 |
+
(
|
519 |
+
batch_size,
|
520 |
+
num_frames,
|
521 |
+
-1,
|
522 |
+
)
|
523 |
+
+ image.shape[2:]
|
524 |
+
)
|
525 |
+
.permute(0, 2, 1, 3, 4)
|
526 |
+
)
|
527 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
528 |
+
video = video.float()
|
529 |
+
return video
|
530 |
+
|
531 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
532 |
+
def enable_vae_slicing(self):
|
533 |
+
r"""
|
534 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
535 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
536 |
+
"""
|
537 |
+
self.vae.enable_slicing()
|
538 |
+
|
539 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
540 |
+
def disable_vae_slicing(self):
|
541 |
+
r"""
|
542 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
543 |
+
computing decoding in one step.
|
544 |
+
"""
|
545 |
+
self.vae.disable_slicing()
|
546 |
+
|
547 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
548 |
+
def enable_vae_tiling(self):
|
549 |
+
r"""
|
550 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
551 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
552 |
+
processing larger images.
|
553 |
+
"""
|
554 |
+
self.vae.enable_tiling()
|
555 |
+
|
556 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
557 |
+
def disable_vae_tiling(self):
|
558 |
+
r"""
|
559 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
560 |
+
computing decoding in one step.
|
561 |
+
"""
|
562 |
+
self.vae.disable_tiling()
|
563 |
+
|
564 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
|
565 |
+
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
566 |
+
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
|
567 |
+
|
568 |
+
The suffixes after the scaling factors represent the stages where they are being applied.
|
569 |
+
|
570 |
+
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
|
571 |
+
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
572 |
+
|
573 |
+
Args:
|
574 |
+
s1 (`float`):
|
575 |
+
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
576 |
+
mitigate "oversmoothing effect" in the enhanced denoising process.
|
577 |
+
s2 (`float`):
|
578 |
+
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
579 |
+
mitigate "oversmoothing effect" in the enhanced denoising process.
|
580 |
+
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
581 |
+
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
582 |
+
"""
|
583 |
+
if not hasattr(self, "unet"):
|
584 |
+
raise ValueError("The pipeline must have `unet` for using FreeU.")
|
585 |
+
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
|
586 |
+
|
587 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
|
588 |
+
def disable_freeu(self):
|
589 |
+
"""Disables the FreeU mechanism if enabled."""
|
590 |
+
self.unet.disable_freeu()
|
591 |
+
|
592 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
593 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
594 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
595 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
596 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
597 |
+
# and should be between [0, 1]
|
598 |
+
|
599 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
600 |
+
extra_step_kwargs = {}
|
601 |
+
if accepts_eta:
|
602 |
+
extra_step_kwargs["eta"] = eta
|
603 |
+
|
604 |
+
# check if the scheduler accepts generator
|
605 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
606 |
+
if accepts_generator:
|
607 |
+
extra_step_kwargs["generator"] = generator
|
608 |
+
return extra_step_kwargs
|
609 |
+
|
610 |
+
def check_inputs(
|
611 |
+
self,
|
612 |
+
prompt,
|
613 |
+
height,
|
614 |
+
width,
|
615 |
+
callback_steps,
|
616 |
+
negative_prompt=None,
|
617 |
+
prompt_embeds=None,
|
618 |
+
negative_prompt_embeds=None,
|
619 |
+
callback_on_step_end_tensor_inputs=None,
|
620 |
+
latent_interpolation_method=None,
|
621 |
+
):
|
622 |
+
if height % 8 != 0 or width % 8 != 0:
|
623 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
624 |
+
|
625 |
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
626 |
+
raise ValueError(
|
627 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
628 |
+
f" {type(callback_steps)}."
|
629 |
+
)
|
630 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
631 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
632 |
+
):
|
633 |
+
raise ValueError(
|
634 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
635 |
+
)
|
636 |
+
|
637 |
+
if prompt is not None and prompt_embeds is not None:
|
638 |
+
raise ValueError(
|
639 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
640 |
+
" only forward one of the two."
|
641 |
+
)
|
642 |
+
elif prompt is None and prompt_embeds is None:
|
643 |
+
raise ValueError(
|
644 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
645 |
+
)
|
646 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
647 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
648 |
+
|
649 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
650 |
+
raise ValueError(
|
651 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
652 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
653 |
+
)
|
654 |
+
|
655 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
656 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
657 |
+
raise ValueError(
|
658 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
659 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
660 |
+
f" {negative_prompt_embeds.shape}."
|
661 |
+
)
|
662 |
+
|
663 |
+
if latent_interpolation_method is not None:
|
664 |
+
if latent_interpolation_method not in ["lerp", "slerp"] and not isinstance(
|
665 |
+
latent_interpolation_method, FunctionType
|
666 |
+
):
|
667 |
+
raise ValueError(
|
668 |
+
"`latent_interpolation_method` must be one of `lerp`, `slerp` or a Callable[[torch.Tensor, torch.Tensor, int], torch.Tensor]"
|
669 |
+
)
|
670 |
+
|
671 |
+
def prepare_latents(
|
672 |
+
self,
|
673 |
+
image,
|
674 |
+
strength,
|
675 |
+
batch_size,
|
676 |
+
num_channels_latents,
|
677 |
+
num_frames,
|
678 |
+
height,
|
679 |
+
width,
|
680 |
+
dtype,
|
681 |
+
device,
|
682 |
+
generator,
|
683 |
+
latents=None,
|
684 |
+
latent_interpolation_method="slerp",
|
685 |
+
):
|
686 |
+
shape = (
|
687 |
+
batch_size,
|
688 |
+
num_channels_latents,
|
689 |
+
num_frames,
|
690 |
+
height // self.vae_scale_factor,
|
691 |
+
width // self.vae_scale_factor,
|
692 |
+
)
|
693 |
+
|
694 |
+
if latents is None:
|
695 |
+
image = image.to(device=device, dtype=dtype)
|
696 |
+
|
697 |
+
if image.shape[1] == 4:
|
698 |
+
latents = image
|
699 |
+
else:
|
700 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
701 |
+
if self.vae.config.force_upcast:
|
702 |
+
image = image.float()
|
703 |
+
self.vae.to(dtype=torch.float32)
|
704 |
+
|
705 |
+
if isinstance(generator, list):
|
706 |
+
if len(generator) != batch_size:
|
707 |
+
raise ValueError(
|
708 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
709 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
710 |
+
)
|
711 |
+
|
712 |
+
init_latents = [
|
713 |
+
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
714 |
+
for i in range(batch_size)
|
715 |
+
]
|
716 |
+
init_latents = torch.cat(init_latents, dim=0)
|
717 |
+
else:
|
718 |
+
init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
|
719 |
+
|
720 |
+
if self.vae.config.force_upcast:
|
721 |
+
self.vae.to(dtype)
|
722 |
+
|
723 |
+
init_latents = init_latents.to(dtype)
|
724 |
+
init_latents = self.vae.config.scaling_factor * init_latents
|
725 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
726 |
+
latents = latents * self.scheduler.init_noise_sigma
|
727 |
+
|
728 |
+
if latent_interpolation_method == "lerp":
|
729 |
+
|
730 |
+
def latent_cls(v0, v1, index):
|
731 |
+
return lerp(v0, v1, index / num_frames * (1 - strength))
|
732 |
+
elif latent_interpolation_method == "slerp":
|
733 |
+
|
734 |
+
def latent_cls(v0, v1, index):
|
735 |
+
return slerp(v0, v1, index / num_frames * (1 - strength))
|
736 |
+
else:
|
737 |
+
latent_cls = latent_interpolation_method
|
738 |
+
|
739 |
+
for i in range(num_frames):
|
740 |
+
latents[:, :, i, :, :] = latent_cls(latents[:, :, i, :, :], init_latents, i)
|
741 |
+
else:
|
742 |
+
if shape != latents.shape:
|
743 |
+
# [B, C, F, H, W]
|
744 |
+
raise ValueError(f"`latents` expected to have {shape=}, but found {latents.shape=}")
|
745 |
+
latents = latents.to(device, dtype=dtype)
|
746 |
+
|
747 |
+
return latents
|
748 |
+
|
749 |
+
@torch.no_grad()
|
750 |
+
def __call__(
|
751 |
+
self,
|
752 |
+
image: PipelineImageInput,
|
753 |
+
prompt: Optional[Union[str, List[str]]] = None,
|
754 |
+
height: Optional[int] = None,
|
755 |
+
width: Optional[int] = None,
|
756 |
+
num_frames: int = 16,
|
757 |
+
num_inference_steps: int = 50,
|
758 |
+
timesteps: Optional[List[int]] = None,
|
759 |
+
guidance_scale: float = 7.5,
|
760 |
+
strength: float = 0.8,
|
761 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
762 |
+
num_videos_per_prompt: Optional[int] = 1,
|
763 |
+
eta: float = 0.0,
|
764 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
765 |
+
latents: Optional[torch.FloatTensor] = None,
|
766 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
767 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
768 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
769 |
+
output_type: Optional[str] = "pil",
|
770 |
+
return_dict: bool = True,
|
771 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
772 |
+
callback_steps: Optional[int] = 1,
|
773 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
774 |
+
clip_skip: Optional[int] = None,
|
775 |
+
latent_interpolation_method: Union[str, Callable[[torch.Tensor, torch.Tensor, int], torch.Tensor]] = "slerp",
|
776 |
+
):
|
777 |
+
r"""
|
778 |
+
The call function to the pipeline for generation.
|
779 |
+
|
780 |
+
Args:
|
781 |
+
image (`PipelineImageInput`):
|
782 |
+
The input image to condition the generation on.
|
783 |
+
prompt (`str` or `List[str]`, *optional*):
|
784 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
785 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
786 |
+
The height in pixels of the generated video.
|
787 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
788 |
+
The width in pixels of the generated video.
|
789 |
+
num_frames (`int`, *optional*, defaults to 16):
|
790 |
+
The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
|
791 |
+
amounts to 2 seconds of video.
|
792 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
793 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
|
794 |
+
expense of slower inference.
|
795 |
+
strength (`float`, *optional*, defaults to 0.8):
|
796 |
+
Higher strength leads to more differences between original image and generated video.
|
797 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
798 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
799 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
800 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
801 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
802 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
803 |
+
eta (`float`, *optional*, defaults to 0.0):
|
804 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
805 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
806 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
807 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
808 |
+
generation deterministic.
|
809 |
+
latents (`torch.FloatTensor`, *optional*):
|
810 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
|
811 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
812 |
+
tensor is generated by sampling using the supplied random `generator`. Latents should be of shape
|
813 |
+
`(batch_size, num_channel, num_frames, height, width)`.
|
814 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
815 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
816 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
817 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
818 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
819 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
820 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*):
|
821 |
+
Optional image input to work with IP Adapters.
|
822 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
823 |
+
The output format of the generated video. Choose between `torch.FloatTensor`, `PIL.Image` or
|
824 |
+
`np.array`.
|
825 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
826 |
+
Whether or not to return a [`AnimateDiffImgToVideoPipelineOutput`] instead
|
827 |
+
of a plain tuple.
|
828 |
+
callback (`Callable`, *optional*):
|
829 |
+
A function that calls every `callback_steps` steps during inference. The function is called with the
|
830 |
+
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
831 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
832 |
+
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
833 |
+
every step.
|
834 |
+
cross_attention_kwargs (`dict`, *optional*):
|
835 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
836 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
837 |
+
clip_skip (`int`, *optional*):
|
838 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
839 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
840 |
+
latent_interpolation_method (`str` or `Callable[[torch.Tensor, torch.Tensor, int], torch.Tensor]]`, *optional*):
|
841 |
+
Must be one of "lerp", "slerp" or a callable that takes in a random noisy latent, image latent and a frame index
|
842 |
+
as input and returns an initial latent for sampling.
|
843 |
+
Examples:
|
844 |
+
|
845 |
+
Returns:
|
846 |
+
[`AnimateDiffImgToVideoPipelineOutput`] or `tuple`:
|
847 |
+
If `return_dict` is `True`, [`AnimateDiffImgToVideoPipelineOutput`] is
|
848 |
+
returned, otherwise a `tuple` is returned where the first element is a list with the generated frames.
|
849 |
+
"""
|
850 |
+
# 0. Default height and width to unet
|
851 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
852 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
853 |
+
|
854 |
+
num_videos_per_prompt = 1
|
855 |
+
|
856 |
+
# 1. Check inputs. Raise error if not correct
|
857 |
+
self.check_inputs(
|
858 |
+
prompt=prompt,
|
859 |
+
height=height,
|
860 |
+
width=width,
|
861 |
+
callback_steps=callback_steps,
|
862 |
+
negative_prompt=negative_prompt,
|
863 |
+
prompt_embeds=prompt_embeds,
|
864 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
865 |
+
latent_interpolation_method=latent_interpolation_method,
|
866 |
+
)
|
867 |
+
|
868 |
+
# 2. Define call parameters
|
869 |
+
if prompt is not None and isinstance(prompt, str):
|
870 |
+
batch_size = 1
|
871 |
+
elif prompt is not None and isinstance(prompt, list):
|
872 |
+
batch_size = len(prompt)
|
873 |
+
else:
|
874 |
+
batch_size = prompt_embeds.shape[0]
|
875 |
+
|
876 |
+
device = self._execution_device
|
877 |
+
|
878 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
879 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
880 |
+
# corresponds to doing no classifier free guidance.
|
881 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
882 |
+
|
883 |
+
# 3. Encode input prompt
|
884 |
+
text_encoder_lora_scale = (
|
885 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
886 |
+
)
|
887 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
888 |
+
prompt,
|
889 |
+
device,
|
890 |
+
num_videos_per_prompt,
|
891 |
+
do_classifier_free_guidance,
|
892 |
+
negative_prompt,
|
893 |
+
prompt_embeds=prompt_embeds,
|
894 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
895 |
+
lora_scale=text_encoder_lora_scale,
|
896 |
+
clip_skip=clip_skip,
|
897 |
+
)
|
898 |
+
|
899 |
+
# For classifier free guidance, we need to do two forward passes.
|
900 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
901 |
+
# to avoid doing two forward passes
|
902 |
+
if do_classifier_free_guidance:
|
903 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
904 |
+
|
905 |
+
if ip_adapter_image is not None:
|
906 |
+
output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
|
907 |
+
image_embeds, negative_image_embeds = self.encode_image(
|
908 |
+
ip_adapter_image, device, num_videos_per_prompt, output_hidden_state
|
909 |
+
)
|
910 |
+
if do_classifier_free_guidance:
|
911 |
+
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
912 |
+
|
913 |
+
# 4. Preprocess image
|
914 |
+
image = self.image_processor.preprocess(image, height=height, width=width)
|
915 |
+
|
916 |
+
# 5. Prepare timesteps
|
917 |
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
918 |
+
|
919 |
+
# 6. Prepare latent variables
|
920 |
+
num_channels_latents = self.unet.config.in_channels
|
921 |
+
latents = self.prepare_latents(
|
922 |
+
image=image,
|
923 |
+
strength=strength,
|
924 |
+
batch_size=batch_size * num_videos_per_prompt,
|
925 |
+
num_channels_latents=num_channels_latents,
|
926 |
+
num_frames=num_frames,
|
927 |
+
height=height,
|
928 |
+
width=width,
|
929 |
+
dtype=prompt_embeds.dtype,
|
930 |
+
device=device,
|
931 |
+
generator=generator,
|
932 |
+
latents=latents,
|
933 |
+
latent_interpolation_method=latent_interpolation_method,
|
934 |
+
)
|
935 |
+
|
936 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
937 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
938 |
+
|
939 |
+
# 8. Add image embeds for IP-Adapter
|
940 |
+
added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
|
941 |
+
|
942 |
+
# 9. Denoising loop
|
943 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
944 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
945 |
+
for i, t in enumerate(timesteps):
|
946 |
+
# expand the latents if we are doing classifier free guidance
|
947 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
948 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
949 |
+
|
950 |
+
# predict the noise residual
|
951 |
+
noise_pred = self.unet(
|
952 |
+
latent_model_input,
|
953 |
+
t,
|
954 |
+
encoder_hidden_states=prompt_embeds,
|
955 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
956 |
+
added_cond_kwargs=added_cond_kwargs,
|
957 |
+
).sample
|
958 |
+
|
959 |
+
# perform guidance
|
960 |
+
if do_classifier_free_guidance:
|
961 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
962 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
963 |
+
|
964 |
+
# compute the previous noisy sample x_t -> x_t-1
|
965 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
966 |
+
|
967 |
+
# call the callback, if provided
|
968 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
969 |
+
progress_bar.update()
|
970 |
+
if callback is not None and i % callback_steps == 0:
|
971 |
+
callback(i, t, latents)
|
972 |
+
|
973 |
+
if output_type == "latent":
|
974 |
+
return AnimateDiffImgToVideoPipelineOutput(frames=latents)
|
975 |
+
|
976 |
+
# 10. Post-processing
|
977 |
+
video_tensor = self.decode_latents(latents)
|
978 |
+
|
979 |
+
if output_type == "pt":
|
980 |
+
video = video_tensor
|
981 |
+
else:
|
982 |
+
video = tensor2vid(video_tensor, self.image_processor, output_type=output_type)
|
983 |
+
|
984 |
+
# 11. Offload all models
|
985 |
+
self.maybe_free_model_hooks()
|
986 |
+
|
987 |
+
if not return_dict:
|
988 |
+
return (video,)
|
989 |
+
|
990 |
+
return AnimateDiffImgToVideoPipelineOutput(frames=video)
|