--- language: - zh license: apache-2.0 library_name: peft tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_15_0 base_model: openai/whisper-tiny model-index: - name: Whisper tiny TW - AlanDlink results: [] --- # Whisper tiny TW - AlanDlink This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 15.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.6078 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.3802 | 0.67 | 500 | 3.3992 | | 2.1962 | 1.33 | 1000 | 2.1643 | | 1.4348 | 2.0 | 1500 | 1.4068 | | 0.7108 | 2.67 | 2000 | 0.6926 | | 0.6801 | 3.33 | 2500 | 0.6374 | | 0.6273 | 4.0 | 3000 | 0.6195 | | 0.6001 | 4.67 | 3500 | 0.6106 | | 0.6082 | 5.33 | 4000 | 0.6078 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0