File size: 1,582 Bytes
989666f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2010f19
989666f
 
 
 
 
 
 
 
 
2010f19
 
 
 
 
989666f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4072ac
989666f
 
 
 
 
2010f19
989666f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
tags:
- generated_from_trainer
datasets:
- null
metrics:
- precision
- recall
- f1
- accuracy
model_index:
- name: bert-srb-ner-setimes
  results:
  - task:
      name: Token Classification
      type: token-classification
    metric:
      name: Accuracy
      type: accuracy
      value: 0.9328380888063481
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-srb-ner-setimes

This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2384
- Precision: 0.6528
- Recall: 0.6863
- F1: 0.6691
- Accuracy: 0.9328

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 207  | 0.2384          | 0.6528    | 0.6863 | 0.6691 | 0.9328   |


### Framework versions

- Transformers 4.9.2
- Pytorch 1.9.0
- Datasets 1.11.0
- Tokenizers 0.10.1