--- tags: - generated_from_trainer datasets: - null metrics: - precision - recall - f1 - accuracy model_index: - name: bert-srb-ner results: - task: name: Token Classification type: token-classification metric: name: Accuracy type: accuracy value: 0.9641060273510046 --- # bert-srb-ner This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1647 - Precision: 0.8247 - Recall: 0.8454 - F1: 0.8349 - Accuracy: 0.9641 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 207 | 0.2040 | 0.7006 | 0.7466 | 0.7228 | 0.9411 | | No log | 2.0 | 414 | 0.1561 | 0.7299 | 0.7868 | 0.7573 | 0.9519 | | 0.2313 | 3.0 | 621 | 0.1455 | 0.7693 | 0.7992 | 0.7840 | 0.9567 | | 0.2313 | 4.0 | 828 | 0.1628 | 0.7760 | 0.8037 | 0.7896 | 0.9570 | | 0.0828 | 5.0 | 1035 | 0.1424 | 0.7997 | 0.8299 | 0.8145 | 0.9604 | | 0.0828 | 6.0 | 1242 | 0.1512 | 0.7983 | 0.8361 | 0.8168 | 0.9618 | | 0.0828 | 7.0 | 1449 | 0.1587 | 0.8084 | 0.8415 | 0.8246 | 0.9627 | | 0.0362 | 8.0 | 1656 | 0.1613 | 0.8154 | 0.8358 | 0.8255 | 0.9632 | | 0.0362 | 9.0 | 1863 | 0.1685 | 0.8211 | 0.8429 | 0.8319 | 0.9632 | | 0.0174 | 10.0 | 2070 | 0.1647 | 0.8247 | 0.8454 | 0.8349 | 0.9641 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0 - Datasets 1.11.0 - Tokenizers 0.10.1