File size: 1,958 Bytes
cae2b7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
tags:
- generated_from_trainer
datasets:
- null
metrics:
- precision
- recall
- f1
- accuracy
model_index:
- name: distilbert-srb-ner-setimes
results:
- task:
name: Token Classification
type: token-classification
metric:
name: Accuracy
type: accuracy
value: 0.962385099177552
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-srb-ner-setimes
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1354
- Precision: 0.8
- Recall: 0.8319
- F1: 0.8156
- Accuracy: 0.9624
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 207 | 0.2206 | 0.7029 | 0.7267 | 0.7146 | 0.9384 |
| No log | 2.0 | 414 | 0.1582 | 0.7449 | 0.7813 | 0.7627 | 0.9532 |
| 0.2358 | 3.0 | 621 | 0.1449 | 0.7756 | 0.8171 | 0.7958 | 0.9579 |
| 0.2358 | 4.0 | 828 | 0.1382 | 0.7903 | 0.8329 | 0.8110 | 0.9609 |
| 0.0895 | 5.0 | 1035 | 0.1354 | 0.8 | 0.8319 | 0.8156 | 0.9624 |
### Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0
- Datasets 1.11.0
- Tokenizers 0.10.1
|