--- base_model: unsloth/Meta-Llama-3.1-8B library_name: peft license: llama3.1 tags: - generated_from_trainer model-index: - name: outputs/out/qlora-llama3_1-8b results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: unsloth/Meta-Llama-3.1-8B tokenizer_type: AutoTokenizer #load_in_8bit: true load_in_4bit: true strict: false datasets: - path: Alignment-Lab-AI/claudeopus-sharegpt type: sharegpt chat_template: llama3 dataset_prepared_path: last_run_prepared val_set_size: 0.0 output_dir: ./outputs/out/qlora-llama3_1-8b save_safetensors: true adapter: qlora sequence_len: 8192 sample_packing: true #pad_to_sequence_len: true lora_r: 16 lora_alpha: 64 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true gradient_accumulation_steps: 16 micro_batch_size: 2 num_epochs: 2 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 0.00035 train_on_inputs: false group_by_length: true bf16: true tf32: true eval_sample_packing: true pad_to_sequence_len: true wandb_project: ARBIUS-8b gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: true logging_steps: 1 flash_attention: true neft_tune_alpha: 3 warmup_ratio: 0.5 evals_per_epoch: 4 saves_per_epoch: 1 weight_decay: 0.0 fsdp: - full_shard - auto_wrap fsdp_config: fsdp_limit_all_gathers: true fsdp_sync_module_states: true fsdp_offload_params: true fsdp_use_orig_params: false fsdp_cpu_ram_efficient_loading: true fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer fsdp_state_dict_type: FULL_STATE_DICT fsdp_sharding_strategy: FULL_SHARD special_tokens: pad_token: <|end_of_text|> bos_token: <|begin_of_text|> eos_token: <|eot_id|> ```

# outputs/out/qlora-llama3_1-8b This model is a fine-tuned version of [unsloth/Meta-Llama-3.1-8B](https://huggingface.co/unsloth/Meta-Llama-3.1-8B) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00035 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 6 - gradient_accumulation_steps: 16 - total_train_batch_size: 192 - total_eval_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 34 - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.12.0 - Transformers 4.44.0 - Pytorch 2.1.2+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1