File size: 1,426 Bytes
2b224f4 2cd309b 2b224f4 78931a5 93c1c64 78931a5 93c1c64 78931a5 93c1c64 78931a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
license: mit
---
<div align="center">
# Re-implementation of ControlNet with Shape Masks
[[`GitHub`]](https://github.com/AlonzoLeeeooo/shape-guided-controlnet) / [[`Dataset`]](https://huggingface.co/datasets/AlonzoLeeeooo/COCO2014-train-u2net-masks)
</div>
A re-implementation of ControlNet with shape masks.
# Model Weights Structure
```
shape-guided-controlnet/
βββ annotators <----- Model weights of the shape mask annotator (`U2-Net`)
βββ u2net.pth
βββ shape-guided-controlnet <----- Model weights of the trained ControlNet with shape masks
βββ config.json
βββ diffusion_pytorch_model.safetensors
βββ stable-diffusion-v1.5 <----- Model weights of Stable Diffusion v1.5
βββ feature_extractor
βββ scheduler
βββ text_encoder
βββ tokenizer
βββ unet
βββ vae
βββ model_index.json
βββ v1-5-pruned.safetensors
βββ v1-inference.yaml
```
# Results
Here are some example results generated by the trained model:
1. "A red bag"
<div align="center">
<img src="assets/bag_total.png" alt="Bag" width="500" />
</div>
2. "A sport car"
<div align="center">
<img src="assets/sport_car_total.png" alt="Sport Car" width="500" />
</div>
3. "A blue truck"
<div align="center">
<img src="assets/truck_total.png" alt="Truck" width="500" />
</div> |