Update README.md
Browse files
README.md
CHANGED
@@ -151,9 +151,9 @@ Update your own personal inference settings to generate different styles of imag
|
|
151 |
- settings:
|
152 |
|
153 |
model:
|
154 |
-
ckpt: "
|
155 |
-
ckpt_lm: ""
|
156 |
-
token: ""
|
157 |
|
158 |
transport:
|
159 |
path_type: "Linear" # option: ["Linear", "GVP", "VP"]
|
@@ -169,41 +169,17 @@ Update your own personal inference settings to generate different styles of imag
|
|
169 |
likelihood: false # option: true or false
|
170 |
|
171 |
infer:
|
172 |
-
resolution: "1024x1024"
|
173 |
-
num_sampling_steps: 60
|
174 |
-
cfg_scale: 4.
|
175 |
-
solver: "euler"
|
176 |
-
t_shift: 4
|
177 |
-
|
178 |
-
|
179 |
-
|
|
|
180 |
```
|
181 |
|
182 |
-
- model:
|
183 |
-
- `ckpt`: lumina-next-t2i checkpoint path from [huggingface repo](https://huggingface.co/Alpha-VLLM/Lumina-Next-T2I) containing `consolidated*.pth` and `model_args.pth`.
|
184 |
-
- `ckpt_lm`: LLM checkpoint.
|
185 |
-
- `token`: huggingface access token for accessing gated repo.
|
186 |
-
- transport:
|
187 |
-
- `path_type`: the type of path for transport: 'Linear', 'GVP' (Geodesic Vector Pursuit), or 'VP' (Vector Pursuit).
|
188 |
-
- `prediction`: the prediction model for the transport dynamics.
|
189 |
-
- `loss_weight`: the weighting of different components in the loss function, can be 'velocity' for dynamic modeling, 'likelihood' for statistical consistency, or None for no weighting
|
190 |
-
- `sample_eps`: sampling in the transport model.
|
191 |
-
- `train_eps`: training to stabilize the learning process.
|
192 |
-
- ode:
|
193 |
-
- `atol`: Absolute tolerance for the ODE solver. (options: ["Linear", "GVP", "VP"])
|
194 |
-
- `rtol`: Relative tolerance for the ODE solver. (option: ["velocity", "score", "noise"])
|
195 |
-
- `reverse`: run the ODE solver in reverse. (option: [None, "velocity", "likelihood"])
|
196 |
-
- `likelihood`: Enable calculation of likelihood during the ODE solving process.
|
197 |
-
- infer
|
198 |
-
- `resolution`: generated image resolution.
|
199 |
-
- `num_sampling_steps`: sampling step for generating image.
|
200 |
-
- `cfg_scale`: classifier-free guide scaling factor
|
201 |
-
- `solver`: solver for image generation.
|
202 |
-
- `t_shift`: time shift factor.
|
203 |
-
- `ntk_scaling`: ntk rope scaling factor.
|
204 |
-
- `proportional_attn`: Whether to use proportional attention.
|
205 |
-
- `seed`: random initialization seeds.
|
206 |
-
|
207 |
1. Run with CLI
|
208 |
|
209 |
inference command:
|
|
|
151 |
- settings:
|
152 |
|
153 |
model:
|
154 |
+
ckpt: ""
|
155 |
+
ckpt_lm: ""
|
156 |
+
token: ""
|
157 |
|
158 |
transport:
|
159 |
path_type: "Linear" # option: ["Linear", "GVP", "VP"]
|
|
|
169 |
likelihood: false # option: true or false
|
170 |
|
171 |
infer:
|
172 |
+
resolution: "1024x1024" # option: ["1024x1024", "512x2048", "2048x512", "(Extrapolation) 1664x1664", "(Extrapolation) 1024x2048", "(Extrapolation) 2048x1024"]
|
173 |
+
num_sampling_steps: 60 # range: 1-1000
|
174 |
+
cfg_scale: 4. # range: 1-20
|
175 |
+
solver: "euler" # option: ["euler", "dopri5", "dopri8"]
|
176 |
+
t_shift: 4 # range: 1-20 (int only)
|
177 |
+
scaling_method: "Time-aware" # option: ["Time-aware", "None"]
|
178 |
+
scale_watershed: 0.3 # range: 0.0-1.0
|
179 |
+
proportional_attn: true # option: true or false
|
180 |
+
seed: 0 # rnage: any number
|
181 |
```
|
182 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
1. Run with CLI
|
184 |
|
185 |
inference command:
|