PommesPeter commited on
Commit
8989e35
·
verified ·
1 Parent(s): 2272d89

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -36
README.md CHANGED
@@ -151,9 +151,9 @@ Update your own personal inference settings to generate different styles of imag
151
  - settings:
152
 
153
  model:
154
- ckpt: "/path/to/ckpt" # if ckpt is "", you should use `--ckpt` for passing model path when using `lumina` cli.
155
- ckpt_lm: "" # if ckpt is "", you should use `--ckpt_lm` for passing model path when using `lumina` cli.
156
- token: "" # if LLM is a huggingface gated repo, you should input your access token from huggingface and when token is "", you should `--token` for accessing the model.
157
 
158
  transport:
159
  path_type: "Linear" # option: ["Linear", "GVP", "VP"]
@@ -169,41 +169,17 @@ Update your own personal inference settings to generate different styles of imag
169
  likelihood: false # option: true or false
170
 
171
  infer:
172
- resolution: "1024x1024" # option: ["1024x1024", "512x2048", "2048x512", "(Extrapolation) 1664x1664", "(Extrapolation) 1024x2048", "(Extrapolation) 2048x1024"]
173
- num_sampling_steps: 60 # range: 1-1000
174
- cfg_scale: 4. # range: 1-20
175
- solver: "euler" # option: ["euler", "dopri5", "dopri8"]
176
- t_shift: 4 # range: 1-20 (int only)
177
- ntk_scaling: true # option: true or false
178
- proportional_attn: true # option: true or false
179
- seed: 0 # rnage: any number
 
180
  ```
181
 
182
- - model:
183
- - `ckpt`: lumina-next-t2i checkpoint path from [huggingface repo](https://huggingface.co/Alpha-VLLM/Lumina-Next-T2I) containing `consolidated*.pth` and `model_args.pth`.
184
- - `ckpt_lm`: LLM checkpoint.
185
- - `token`: huggingface access token for accessing gated repo.
186
- - transport:
187
- - `path_type`: the type of path for transport: 'Linear', 'GVP' (Geodesic Vector Pursuit), or 'VP' (Vector Pursuit).
188
- - `prediction`: the prediction model for the transport dynamics.
189
- - `loss_weight`: the weighting of different components in the loss function, can be 'velocity' for dynamic modeling, 'likelihood' for statistical consistency, or None for no weighting
190
- - `sample_eps`: sampling in the transport model.
191
- - `train_eps`: training to stabilize the learning process.
192
- - ode:
193
- - `atol`: Absolute tolerance for the ODE solver. (options: ["Linear", "GVP", "VP"])
194
- - `rtol`: Relative tolerance for the ODE solver. (option: ["velocity", "score", "noise"])
195
- - `reverse`: run the ODE solver in reverse. (option: [None, "velocity", "likelihood"])
196
- - `likelihood`: Enable calculation of likelihood during the ODE solving process.
197
- - infer
198
- - `resolution`: generated image resolution.
199
- - `num_sampling_steps`: sampling step for generating image.
200
- - `cfg_scale`: classifier-free guide scaling factor
201
- - `solver`: solver for image generation.
202
- - `t_shift`: time shift factor.
203
- - `ntk_scaling`: ntk rope scaling factor.
204
- - `proportional_attn`: Whether to use proportional attention.
205
- - `seed`: random initialization seeds.
206
-
207
  1. Run with CLI
208
 
209
  inference command:
 
151
  - settings:
152
 
153
  model:
154
+ ckpt: ""
155
+ ckpt_lm: ""
156
+ token: ""
157
 
158
  transport:
159
  path_type: "Linear" # option: ["Linear", "GVP", "VP"]
 
169
  likelihood: false # option: true or false
170
 
171
  infer:
172
+ resolution: "1024x1024" # option: ["1024x1024", "512x2048", "2048x512", "(Extrapolation) 1664x1664", "(Extrapolation) 1024x2048", "(Extrapolation) 2048x1024"]
173
+ num_sampling_steps: 60 # range: 1-1000
174
+ cfg_scale: 4. # range: 1-20
175
+ solver: "euler" # option: ["euler", "dopri5", "dopri8"]
176
+ t_shift: 4 # range: 1-20 (int only)
177
+ scaling_method: "Time-aware" # option: ["Time-aware", "None"]
178
+ scale_watershed: 0.3 # range: 0.0-1.0
179
+ proportional_attn: true # option: true or false
180
+ seed: 0 # rnage: any number
181
  ```
182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
183
  1. Run with CLI
184
 
185
  inference command: