File size: 8,915 Bytes
445dfa2
 
53ca083
 
 
445dfa2
 
 
 
61b5a5d
445dfa2
 
 
 
f2b12e4
d0097c9
445dfa2
a90daad
 
445dfa2
 
61b5a5d
ff77198
98c4ac7
 
445dfa2
 
 
 
 
 
 
 
41a0160
445dfa2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61b5a5d
445dfa2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22de46f
445dfa2
 
 
 
 
61b5a5d
445dfa2
61b5a5d
445dfa2
 
22de46f
445dfa2
 
 
 
 
22de46f
445dfa2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22de46f
445dfa2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61b5a5d
445dfa2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
---
license: apache-2.0
tags:
  - text-to-image
  - safetensors
---

# Lumina-Next-T2I

The `Lumina-Next-T2I` model uses Next-DiT with a 2B parameters model as well as using [Gemma-2B](https://huggingface.co/google/gemma-2b) as a text encoder. Compared with `Lumina-T2I`, it has faster inference speed, richer generation style, and more multilingual support, etc.

Our generative model has `Next-DiT` as the backbone, the text encoder is the `Gemma` 2B model, and the VAE uses a version of `sdxl` fine-tuned by stabilityai.

- Generation Model: Next-DiT
- Text Encoder: [Gemma-2B](https://huggingface.co/google/gemma-2b)
- VAE: [stabilityai/sdxl-vae](https://huggingface.co/stabilityai/sdxl-vae)

[paper](https://arxiv.org/abs/2405.05945)

## ๐Ÿ“ฐ News

- [2024-5-28] ๐Ÿš€๐Ÿš€๐Ÿš€ We updated the `Lumina-Next-T2I` model to support 2K Resolution image generation.

- [2024-5-16] โ—โ—โ— We have converted the `.pth` weights to `.safetensors` weights. Please pull the latest code to use `demo.py` for inference.

- [2024-5-12] ๐Ÿš€๐Ÿš€๐Ÿš€ We release the next version of `Lumina-T2I`, called `Lumina-Next-T2I` for faster and lower memory usage image generation model.

## ๐ŸŽฎ Model Zoo

More checkpoints of our model will be released soon~

| Resolution | Next-DiT Parameter| Text Encoder | Prediction | Download URL  |
| ---------- | ----------------------- | ------------ | -----------|-------------- |
| 1024       | 2B             |    [Gemma-2B](https://huggingface.co/google/gemma-2b)  |   Rectified Flow | [hugging face](https://huggingface.co/Alpha-VLLM/Lumina-Next-T2I) |

## Installation

Before installation, ensure that you have a working ``nvcc``

```bash
# The command should work and show the same version number as in our case. (12.1 in our case).
nvcc --version
```

On some outdated distros (e.g., CentOS 7), you may also want to check that a late enough version of
``gcc`` is available

```bash
# The command should work and show a version of at least 6.0.
# If not, consult distro-specific tutorials to obtain a newer version or build manually.
gcc --version
```

Downloading Lumina-T2X repo from GitHub:

```bash
git clone https://github.com/Alpha-VLLM/Lumina-T2X
```

### 1. Create a conda environment and install PyTorch

Note: You may want to adjust the CUDA version [according to your driver version](https://docs.nvidia.com/deploy/cuda-compatibility/#default-to-minor-version).

  ```bash
  conda create -n Lumina_T2X -y
  conda activate Lumina_T2X
  conda install python=3.11 pytorch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 pytorch-cuda=12.1 -c pytorch -c nvidia -y
  ```

### 2. Install dependencies

  ```bash
  pip install diffusers fairscale accelerate tensorboard transformers gradio torchdiffeq click
  ```

  or you can use

  ```bash
  cd lumina_next_t2i
  pip install -r requirements.txt
  ```

### 3. Install ``flash-attn``

  ```bash
  pip install flash-attn --no-build-isolation
  ```

### 4. Install [nvidia apex](https://github.com/nvidia/apex) (optional)

>[!Warning]
> While Apex can improve efficiency, it is *not* a must to make Lumina-T2X work.
>
> Note that Lumina-T2X works smoothly with either:
> + Apex not installed at all; OR
> + Apex successfully installed with CUDA and C++ extensions.
>
> However, it will fail when:
> + A Python-only build of Apex is installed.
> 
> If the error `No module named 'fused_layer_norm_cuda'` appears, it typically means you are using a Python-only build of Apex. To resolve this, please run `pip uninstall apex`, and Lumina-T2X should then function correctly.

You can clone the repo and install following the official guidelines (note that we expect a full
build, i.e., with CUDA and C++ extensions)

```bash
pip install ninja
git clone https://github.com/NVIDIA/apex
cd apex
# if pip >= 23.1 (ref: https://pip.pypa.io/en/stable/news/#v23-1) which supports multiple `--config-settings` with the same key... 
pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" ./
# otherwise
pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --global-option="--cpp_ext" --global-option="--cuda_ext" ./
```

## Inference

To ensure that our generative model is ready to use right out of the box, we provide a user-friendly CLI program and a locally deployable Web Demo site.

### CLI

1. Install Lumina-Next-T2I

```bash
pip install -e .
```

2. Prepare the pre-trained model

โญโญ (Recommended) you can use huggingface_cli to download our model:

```bash
huggingface-cli download --resume-download Alpha-VLLM/Lumina-Next-T2I --local-dir /path/to/ckpt
```

or using git for cloning the model you want to use:

```bash
git clone https://huggingface.co/Alpha-VLLM/Lumina-Next-T2I
``` 

1. Setting your personal inference configuration

Update your own personal inference settings to generate different styles of images, checking `config/infer/config.yaml` for detailed settings. Detailed config structure:

> `/path/to/ckpt` should be a directory containing `consolidated*.pth` and `model_args.pth`

```yaml
- settings:

  model:
    ckpt: "/path/to/ckpt"           # if ckpt is "", you should use `--ckpt` for passing model path when using `lumina` cli.
    ckpt_lm: ""                     # if ckpt is "", you should use `--ckpt_lm` for passing model path when using `lumina` cli.
    token: ""                       # if LLM is a huggingface gated repo, you should input your access token from huggingface and when token is "", you should `--token` for accessing the model.

  transport:
    path_type: "Linear"             # option: ["Linear", "GVP", "VP"]
    prediction: "velocity"          # option: ["velocity", "score", "noise"]
    loss_weight: "velocity"         # option: [None, "velocity", "likelihood"]
    sample_eps: 0.1
    train_eps: 0.2

  ode:
    atol: 1e-6                      # Absolute tolerance
    rtol: 1e-3                      # Relative tolerance
    reverse: false                  # option: true or false
    likelihood: false               # option: true or false

  infer:
      resolution: "1024x1024"     # option: ["1024x1024", "512x2048", "2048x512", "(Extrapolation) 1664x1664", "(Extrapolation) 1024x2048", "(Extrapolation) 2048x1024"]
      num_sampling_steps: 60      # range: 1-1000
      cfg_scale: 4.               # range: 1-20
      solver: "euler"             # option: ["euler", "dopri5", "dopri8"]
      t_shift: 4                  # range: 1-20 (int only)
      ntk_scaling: true           # option: true or false
      proportional_attn: true     # option: true or false
      seed: 0                     # rnage: any number
```

- model:
  - `ckpt`: lumina-next-t2i checkpoint path from [huggingface repo](https://huggingface.co/Alpha-VLLM/Lumina-Next-T2I) containing `consolidated*.pth` and `model_args.pth`.
  - `ckpt_lm`: LLM checkpoint.
  - `token`: huggingface access token for accessing gated repo.
- transport: 
  - `path_type`: the type of path for transport: 'Linear', 'GVP' (Geodesic Vector Pursuit), or 'VP' (Vector Pursuit).
  - `prediction`: the prediction model for the transport dynamics.
  - `loss_weight`: the weighting of different components in the loss function, can be 'velocity' for dynamic modeling, 'likelihood' for statistical consistency, or None for no weighting
  - `sample_eps`: sampling in the transport model.
  - `train_eps`: training to stabilize the learning process.
- ode:
  - `atol`: Absolute tolerance for the ODE solver. (options: ["Linear", "GVP", "VP"])
  - `rtol`: Relative tolerance for the ODE solver. (option: ["velocity", "score", "noise"])
  - `reverse`: run the ODE solver in reverse. (option: [None, "velocity", "likelihood"])
  - `likelihood`: Enable calculation of likelihood during the ODE solving process.
- infer
  - `resolution`: generated image resolution.
  - `num_sampling_steps`: sampling step for generating image.
  - `cfg_scale`: classifier-free guide scaling factor
  - `solver`: solver for image generation.
  - `t_shift`: time shift factor.
  - `ntk_scaling`: ntk rope scaling factor.
  - `proportional_attn`: Whether to use proportional attention.
  - `seed`: random initialization seeds.

1. Run with CLI

inference command:
```bash
lumina_next infer -c <config_path> <caption_here> <output_dir>
```

e.g. Demo command:

```bash
cd lumina_next_t2i
lumina_next infer -c "config/infer/settings.yaml" "a snowman of ..." "./outputs"
```

### Web Demo

To host a local gradio demo for interactive inference, run the following command:

```bash
# `/path/to/ckpt` should be a directory containing `consolidated*.pth` and `model_args.pth`

# default
python -u demo.py --ckpt "/path/to/ckpt"

# the demo by default uses bf16 precision. to switch to fp32:
python -u demo.py --ckpt "/path/to/ckpt" --precision fp32 

# use ema model
python -u demo.py --ckpt "/path/to/ckpt" --ema
```