--- license: apache-2.0 tags: - text-to-image - safetensors --- # Lumina-Next-T2I The `Lumina-Next-T2I` model uses Next-DiT with a 2B parameters model as well as using [Gemma-2B](https://huggingface.co/google/gemma-2b) as a text encoder. Compared with `Lumina-T2I`, it has faster inference speed, richer generation style, and more multilingual support, etc. Our generative model has `Next-DiT` as the backbone, the text encoder is the `Gemma` 2B model, and the VAE uses a version of `sdxl` fine-tuned by stabilityai. - Generation Model: Next-DiT - Text Encoder: [Gemma-2B](https://huggingface.co/google/gemma-2b) - VAE: [stabilityai/sdxl-vae](https://huggingface.co/stabilityai/sdxl-vae) [paper](https://arxiv.org/abs/2405.05945) ## 📰 News - [2024-5-28] 🚀🚀🚀 We updated the `Lumina-Next-T2I` model to support 2K Resolution image generation. - [2024-5-16] ❗❗❗ We have converted the `.pth` weights to `.safetensors` weights. Please pull the latest code to use `demo.py` for inference. - [2024-5-12] 🚀🚀🚀 We release the next version of `Lumina-T2I`, called `Lumina-Next-T2I` for faster and lower memory usage image generation model. ## 🎮 Model Zoo More checkpoints of our model will be released soon~ | Resolution | Next-DiT Parameter| Text Encoder | Prediction | Download URL | | ---------- | ----------------------- | ------------ | -----------|-------------- | | 1024 | 2B | [Gemma-2B](https://huggingface.co/google/gemma-2b) | Rectified Flow | [hugging face](https://huggingface.co/Alpha-VLLM/Lumina-Next-T2I) | ## Installation Before installation, ensure that you have a working ``nvcc`` ```bash # The command should work and show the same version number as in our case. (12.1 in our case). nvcc --version ``` On some outdated distros (e.g., CentOS 7), you may also want to check that a late enough version of ``gcc`` is available ```bash # The command should work and show a version of at least 6.0. # If not, consult distro-specific tutorials to obtain a newer version or build manually. gcc --version ``` Downloading Lumina-T2X repo from GitHub: ```bash git clone https://github.com/Alpha-VLLM/Lumina-T2X ``` ### 1. Create a conda environment and install PyTorch Note: You may want to adjust the CUDA version [according to your driver version](https://docs.nvidia.com/deploy/cuda-compatibility/#default-to-minor-version). ```bash conda create -n Lumina_T2X -y conda activate Lumina_T2X conda install python=3.11 pytorch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 pytorch-cuda=12.1 -c pytorch -c nvidia -y ``` ### 2. Install dependencies ```bash pip install diffusers fairscale accelerate tensorboard transformers gradio torchdiffeq click ``` or you can use ```bash cd lumina_next_t2i pip install -r requirements.txt ``` ### 3. Install ``flash-attn`` ```bash pip install flash-attn --no-build-isolation ``` ### 4. Install [nvidia apex](https://github.com/nvidia/apex) (optional) >[!Warning] > While Apex can improve efficiency, it is *not* a must to make Lumina-T2X work. > > Note that Lumina-T2X works smoothly with either: > + Apex not installed at all; OR > + Apex successfully installed with CUDA and C++ extensions. > > However, it will fail when: > + A Python-only build of Apex is installed. > > If the error `No module named 'fused_layer_norm_cuda'` appears, it typically means you are using a Python-only build of Apex. To resolve this, please run `pip uninstall apex`, and Lumina-T2X should then function correctly. You can clone the repo and install following the official guidelines (note that we expect a full build, i.e., with CUDA and C++ extensions) ```bash pip install ninja git clone https://github.com/NVIDIA/apex cd apex # if pip >= 23.1 (ref: https://pip.pypa.io/en/stable/news/#v23-1) which supports multiple `--config-settings` with the same key... pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" ./ # otherwise pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --global-option="--cpp_ext" --global-option="--cuda_ext" ./ ``` ## Inference To ensure that our generative model is ready to use right out of the box, we provide a user-friendly CLI program and a locally deployable Web Demo site. ### CLI 1. Install Lumina-Next-T2I ```bash pip install -e . ``` 2. Prepare the pre-trained model ⭐⭐ (Recommended) you can use huggingface_cli to download our model: ```bash huggingface-cli download --resume-download Alpha-VLLM/Lumina-Next-T2I --local-dir /path/to/ckpt ``` or using git for cloning the model you want to use: ```bash git clone https://huggingface.co/Alpha-VLLM/Lumina-Next-T2I ``` 1. Setting your personal inference configuration Update your own personal inference settings to generate different styles of images, checking `config/infer/config.yaml` for detailed settings. Detailed config structure: > `/path/to/ckpt` should be a directory containing `consolidated*.pth` and `model_args.pth` ```yaml - settings: model: ckpt: "/path/to/ckpt" # if ckpt is "", you should use `--ckpt` for passing model path when using `lumina` cli. ckpt_lm: "" # if ckpt is "", you should use `--ckpt_lm` for passing model path when using `lumina` cli. token: "" # if LLM is a huggingface gated repo, you should input your access token from huggingface and when token is "", you should `--token` for accessing the model. transport: path_type: "Linear" # option: ["Linear", "GVP", "VP"] prediction: "velocity" # option: ["velocity", "score", "noise"] loss_weight: "velocity" # option: [None, "velocity", "likelihood"] sample_eps: 0.1 train_eps: 0.2 ode: atol: 1e-6 # Absolute tolerance rtol: 1e-3 # Relative tolerance reverse: false # option: true or false likelihood: false # option: true or false infer: resolution: "1024x1024" # option: ["1024x1024", "512x2048", "2048x512", "(Extrapolation) 1664x1664", "(Extrapolation) 1024x2048", "(Extrapolation) 2048x1024"] num_sampling_steps: 60 # range: 1-1000 cfg_scale: 4. # range: 1-20 solver: "euler" # option: ["euler", "dopri5", "dopri8"] t_shift: 4 # range: 1-20 (int only) ntk_scaling: true # option: true or false proportional_attn: true # option: true or false seed: 0 # rnage: any number ``` - model: - `ckpt`: lumina-next-t2i checkpoint path from [huggingface repo](https://huggingface.co/Alpha-VLLM/Lumina-Next-T2I) containing `consolidated*.pth` and `model_args.pth`. - `ckpt_lm`: LLM checkpoint. - `token`: huggingface access token for accessing gated repo. - transport: - `path_type`: the type of path for transport: 'Linear', 'GVP' (Geodesic Vector Pursuit), or 'VP' (Vector Pursuit). - `prediction`: the prediction model for the transport dynamics. - `loss_weight`: the weighting of different components in the loss function, can be 'velocity' for dynamic modeling, 'likelihood' for statistical consistency, or None for no weighting - `sample_eps`: sampling in the transport model. - `train_eps`: training to stabilize the learning process. - ode: - `atol`: Absolute tolerance for the ODE solver. (options: ["Linear", "GVP", "VP"]) - `rtol`: Relative tolerance for the ODE solver. (option: ["velocity", "score", "noise"]) - `reverse`: run the ODE solver in reverse. (option: [None, "velocity", "likelihood"]) - `likelihood`: Enable calculation of likelihood during the ODE solving process. - infer - `resolution`: generated image resolution. - `num_sampling_steps`: sampling step for generating image. - `cfg_scale`: classifier-free guide scaling factor - `solver`: solver for image generation. - `t_shift`: time shift factor. - `ntk_scaling`: ntk rope scaling factor. - `proportional_attn`: Whether to use proportional attention. - `seed`: random initialization seeds. 1. Run with CLI inference command: ```bash lumina_next infer -c ``` e.g. Demo command: ```bash cd lumina_next_t2i lumina_next infer -c "config/infer/settings.yaml" "a snowman of ..." "./outputs" ``` ### Web Demo To host a local gradio demo for interactive inference, run the following command: ```bash # `/path/to/ckpt` should be a directory containing `consolidated*.pth` and `model_args.pth` # default python -u demo.py --ckpt "/path/to/ckpt" # the demo by default uses bf16 precision. to switch to fp32: python -u demo.py --ckpt "/path/to/ckpt" --precision fp32 # use ema model python -u demo.py --ckpt "/path/to/ckpt" --ema ```