legal_ai_India_ner_results

This model is a fine-tuned version of nlpaueb/legal-bert-base-uncased on the opennyaiorg/InLegalNER dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1057
  • Precision: 0.8370
  • Recall: 0.8742
  • F1: 0.8552
  • Accuracy: 0.9741

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.4633 1.0 917 0.1226 0.7624 0.8040 0.7827 0.9642
0.1039 2.0 1834 0.1077 0.7996 0.8583 0.8279 0.9702
0.0686 3.0 2751 0.1021 0.8054 0.8695 0.8362 0.9714
0.048 4.0 3668 0.1084 0.8309 0.8706 0.8503 0.9732
0.0368 5.0 4585 0.1057 0.8370 0.8742 0.8552 0.9741

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0

image/png

Downloads last month
24
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Amitava25/legal_ai_India_ner_results

Finetuned
(50)
this model

Dataset used to train Amitava25/legal_ai_India_ner_results