Amitava25's picture
Update README.md
463634f verified
|
raw
history blame
2.23 kB
metadata
library_name: transformers
license: cc-by-sa-4.0
base_model: nlpaueb/legal-bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: legal_ai_India_ner_results
    results: []
datasets:
  - opennyaiorg/InLegalNER

legal_ai_India_ner_results

This model is a fine-tuned version of nlpaueb/legal-bert-base-uncased on the opennyaiorg/InLegalNER dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1057
  • Precision: 0.8370
  • Recall: 0.8742
  • F1: 0.8552
  • Accuracy: 0.9741

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.4633 1.0 917 0.1226 0.7624 0.8040 0.7827 0.9642
0.1039 2.0 1834 0.1077 0.7996 0.8583 0.8279 0.9702
0.0686 3.0 2751 0.1021 0.8054 0.8695 0.8362 0.9714
0.048 4.0 3668 0.1084 0.8309 0.8706 0.8503 0.9732
0.0368 5.0 4585 0.1057 0.8370 0.8742 0.8552 0.9741

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0

image/png