--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: legal_ai_India_ner_results results: [] --- # legal_ai_India_ner_results This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1041 - Precision: 0.7985 - Recall: 0.8638 - F1: 0.8298 - Accuracy: 0.9697 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4662 | 1.0 | 917 | 0.1419 | 0.6784 | 0.7845 | 0.7276 | 0.9533 | | 0.1146 | 2.0 | 1834 | 0.1084 | 0.7529 | 0.8508 | 0.7988 | 0.9623 | | 0.0711 | 3.0 | 2751 | 0.1015 | 0.8031 | 0.8627 | 0.8318 | 0.9705 | | 0.0546 | 4.0 | 3668 | 0.1041 | 0.7985 | 0.8638 | 0.8298 | 0.9697 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0