--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: legal_ai_India_ner_results results: [] --- # legal_ai_India_ner_results This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0989 - Precision: 0.8007 - Recall: 0.8602 - F1: 0.8294 - Accuracy: 0.9700 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4454 | 1.0 | 917 | 0.1342 | 0.6886 | 0.7867 | 0.7344 | 0.9554 | | 0.1136 | 2.0 | 1834 | 0.1004 | 0.7818 | 0.8418 | 0.8107 | 0.9665 | | 0.0712 | 3.0 | 2751 | 0.0973 | 0.7990 | 0.8551 | 0.8261 | 0.9705 | | 0.0535 | 4.0 | 3668 | 0.0989 | 0.8007 | 0.8602 | 0.8294 | 0.9700 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0