File size: 4,040 Bytes
6542b12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
---
library_name: transformers
license: mit
base_model: EleutherAI/gpt-neo-125M
tags:
- generated_from_trainer
model-index:
- name: gpt-neo-125M_menuitemexp
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gpt-neo-125M_menuitemexp

This model is a fine-tuned version of [EleutherAI/gpt-neo-125M](https://huggingface.co/EleutherAI/gpt-neo-125M) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8843

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 25
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 9.1319        | 0.4918  | 30   | 7.7822          |
| 7.0116        | 0.9836  | 60   | 6.2200          |
| 5.5238        | 1.4754  | 90   | 4.9230          |
| 4.2988        | 1.9672  | 120  | 3.8166          |
| 3.296         | 2.4590  | 150  | 2.9837          |
| 2.5326        | 2.9508  | 180  | 2.2714          |
| 1.8979        | 3.4426  | 210  | 1.8421          |
| 1.6111        | 3.9344  | 240  | 1.5914          |
| 1.3322        | 4.4262  | 270  | 1.4063          |
| 1.1786        | 4.9180  | 300  | 1.2800          |
| 1.0535        | 5.4098  | 330  | 1.1787          |
| 0.9352        | 5.9016  | 360  | 1.1194          |
| 0.8669        | 6.3934  | 390  | 1.0640          |
| 0.8312        | 6.8852  | 420  | 1.0327          |
| 0.7797        | 7.3770  | 450  | 1.0137          |
| 0.7653        | 7.8689  | 480  | 0.9842          |
| 0.7149        | 8.3607  | 510  | 0.9717          |
| 0.7059        | 8.8525  | 540  | 0.9627          |
| 0.6857        | 9.3443  | 570  | 0.9478          |
| 0.6648        | 9.8361  | 600  | 0.9424          |
| 0.654         | 10.3279 | 630  | 0.9343          |
| 0.6452        | 10.8197 | 660  | 0.9258          |
| 0.6032        | 11.3115 | 690  | 0.9343          |
| 0.6174        | 11.8033 | 720  | 0.9123          |
| 0.5936        | 12.2951 | 750  | 0.9071          |
| 0.5865        | 12.7869 | 780  | 0.9011          |
| 0.5975        | 13.2787 | 810  | 0.8992          |
| 0.5714        | 13.7705 | 840  | 0.8958          |
| 0.5533        | 14.2623 | 870  | 0.8996          |
| 0.5508        | 14.7541 | 900  | 0.8985          |
| 0.5496        | 15.2459 | 930  | 0.8930          |
| 0.5389        | 15.7377 | 960  | 0.8943          |
| 0.5453        | 16.2295 | 990  | 0.8915          |
| 0.5355        | 16.7213 | 1020 | 0.8863          |
| 0.5271        | 17.2131 | 1050 | 0.8894          |
| 0.5276        | 17.7049 | 1080 | 0.8884          |
| 0.5131        | 18.1967 | 1110 | 0.8891          |
| 0.513         | 18.6885 | 1140 | 0.8860          |
| 0.5075        | 19.1803 | 1170 | 0.8866          |
| 0.5131        | 19.6721 | 1200 | 0.8848          |
| 0.5022        | 20.1639 | 1230 | 0.8851          |
| 0.5116        | 20.6557 | 1260 | 0.8854          |
| 0.5015        | 21.1475 | 1290 | 0.8851          |
| 0.5063        | 21.6393 | 1320 | 0.8844          |
| 0.5064        | 22.1311 | 1350 | 0.8844          |
| 0.4869        | 22.6230 | 1380 | 0.8845          |
| 0.5047        | 23.1148 | 1410 | 0.8849          |
| 0.5027        | 23.6066 | 1440 | 0.8846          |
| 0.4911        | 24.0984 | 1470 | 0.8845          |
| 0.5007        | 24.5902 | 1500 | 0.8844          |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0