--- library_name: transformers license: mit base_model: EleutherAI/gpt-neo-125M tags: - generated_from_trainer model-index: - name: gpt-neo-125M_menuitemexp results: [] --- # gpt-neo-125M_menuitemexp This model is a fine-tuned version of [EleutherAI/gpt-neo-125M](https://huggingface.co/EleutherAI/gpt-neo-125M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8843 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 9.1319 | 0.4918 | 30 | 7.7822 | | 7.0116 | 0.9836 | 60 | 6.2200 | | 5.5238 | 1.4754 | 90 | 4.9230 | | 4.2988 | 1.9672 | 120 | 3.8166 | | 3.296 | 2.4590 | 150 | 2.9837 | | 2.5326 | 2.9508 | 180 | 2.2714 | | 1.8979 | 3.4426 | 210 | 1.8421 | | 1.6111 | 3.9344 | 240 | 1.5914 | | 1.3322 | 4.4262 | 270 | 1.4063 | | 1.1786 | 4.9180 | 300 | 1.2800 | | 1.0535 | 5.4098 | 330 | 1.1787 | | 0.9352 | 5.9016 | 360 | 1.1194 | | 0.8669 | 6.3934 | 390 | 1.0640 | | 0.8312 | 6.8852 | 420 | 1.0327 | | 0.7797 | 7.3770 | 450 | 1.0137 | | 0.7653 | 7.8689 | 480 | 0.9842 | | 0.7149 | 8.3607 | 510 | 0.9717 | | 0.7059 | 8.8525 | 540 | 0.9627 | | 0.6857 | 9.3443 | 570 | 0.9478 | | 0.6648 | 9.8361 | 600 | 0.9424 | | 0.654 | 10.3279 | 630 | 0.9343 | | 0.6452 | 10.8197 | 660 | 0.9258 | | 0.6032 | 11.3115 | 690 | 0.9343 | | 0.6174 | 11.8033 | 720 | 0.9123 | | 0.5936 | 12.2951 | 750 | 0.9071 | | 0.5865 | 12.7869 | 780 | 0.9011 | | 0.5975 | 13.2787 | 810 | 0.8992 | | 0.5714 | 13.7705 | 840 | 0.8958 | | 0.5533 | 14.2623 | 870 | 0.8996 | | 0.5508 | 14.7541 | 900 | 0.8985 | | 0.5496 | 15.2459 | 930 | 0.8930 | | 0.5389 | 15.7377 | 960 | 0.8943 | | 0.5453 | 16.2295 | 990 | 0.8915 | | 0.5355 | 16.7213 | 1020 | 0.8863 | | 0.5271 | 17.2131 | 1050 | 0.8894 | | 0.5276 | 17.7049 | 1080 | 0.8884 | | 0.5131 | 18.1967 | 1110 | 0.8891 | | 0.513 | 18.6885 | 1140 | 0.8860 | | 0.5075 | 19.1803 | 1170 | 0.8866 | | 0.5131 | 19.6721 | 1200 | 0.8848 | | 0.5022 | 20.1639 | 1230 | 0.8851 | | 0.5116 | 20.6557 | 1260 | 0.8854 | | 0.5015 | 21.1475 | 1290 | 0.8851 | | 0.5063 | 21.6393 | 1320 | 0.8844 | | 0.5064 | 22.1311 | 1350 | 0.8844 | | 0.4869 | 22.6230 | 1380 | 0.8845 | | 0.5047 | 23.1148 | 1410 | 0.8849 | | 0.5027 | 23.6066 | 1440 | 0.8846 | | 0.4911 | 24.0984 | 1470 | 0.8845 | | 0.5007 | 24.5902 | 1500 | 0.8844 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0