--- tags: - generated_from_trainer datasets: - invoice metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-fine-tuning-invoice results: - task: name: Token Classification type: token-classification dataset: name: Invoice type: invoice args: invoice metrics: - name: Precision type: precision value: 1.0 - name: Recall type: recall value: 1.0 - name: F1 type: f1 value: 1.0 - name: Accuracy type: accuracy value: 1.0 --- ## LayoutLMv3-Fine-Tuning-Invoice Model #### Model description **LayoutLMv3-Fine-Tuning-Invoice Model** is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the invoice dataset. For the fine-tuning, We used [Invoice Dataset](https://huggingface.co/datasets/darentang/generated) that includes 12 labels ('Other', 'ABN', 'BILLER', 'BILLER_ADDRESS', 'BILLER_POST_CODE', 'DUE_DATE', 'GST', 'INVOICE_DATE', 'INVOICE_NUMBER', 'SUBTOTAL', 'TOTAL', 'BILLER_ADDRESS'). It achieves the following results on the evaluation set: - Loss: 0.005334 - Precision: 1.0 - Recall: 1.0 - F1: 1.0 - Accuracy: 1.0 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 2 - eval_batch_size: 2 - optimizer: epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 1000 ### Training results | Training Loss | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 100 | 0.070030 | 0.972000 | 0.985801 | 0.978852 | 0.997051 | | No log | 200 | 0.017637 | 0.972000 | 0.985801 | 0.978852 | 0.997051 | | No log | 300 | 0.015573 | 0.972000 | 0.985801 | 0.978852 | 0.997051 | | No log | 400 | 0.011000 | 0.973737 | 0.977688 | 0.978852 | 0.996419 | | 0.110800 | 500 | 0.005334 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.110800 | 600 | 0.002994 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.110800 | 700 | 0.002330 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.110800 | 800 | 0.002188 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.110800 | 900 | 0.002105 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.004900 | 1000 | 0.002111 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.20.1